High-level analysis functions#
- py_alf.analysis.analysis(directory, symmetry=None, custom_obs=None, do_tau=True, always=False)#
Perform analysis in the given directory.
Results are written to the pickled dictionary res.pkl and in plain text in the folder res/.
- Parameters:
- directorypath-like object
Directory containing Monte Carlo bins.
- symmetrylist of functions, optional
List of functions reppresenting symmetry operations on lattice, including unity. It is used to symmetrize lattice-type observables.
- custom_obsdict, default=None
Defines additional observables derived from existing observables. The key of each entry is the observable name and the value is a dictionary with the format:
{'needs': some_list, 'kwargs': some_dict, 'function': some_function,}
some_list contains observable names to be read by
py_alf.ana.ReadObs
. Jackknife bins and kwargs from some_dict are handed to some_function with a separate call for each bin.- do_taubool, default=True
Analyze time-displaced correlation functions. Setting this to False speeds up analysis and makes result files much smaller.
- alwaysbool, default=False
Do not skip if parameters and bins are older than results.
- py_alf.check_warmup(*args, gui='tk', **kwargs)#
Plot bins to determine n_skip.
Calls either
py_alf.check_warmup_tk()
orpy_alf.check_warmup_ipy()
.- Parameters:
- *args
- gui{“tk”, “ipy”}
- **kwargs
- py_alf.check_warmup_tk.check_warmup_tk(directories, names, custom_obs=None)#
Plot bins to determine n_skip. Opens a new window.
- Parameters:
- directorieslist of path-like objects
Directories with bins to check.
- nameslist of str
Names of observables to check.
- custom_obsdict, default=None
Defines additional observables derived from existing observables. See
py_alf.analysis()
.
- py_alf.check_warmup_ipy.check_warmup_ipy(directories, names, custom_obs=None, ncols=3)#
Plot bins to determine n_skip in a Jupyter Widget.
- Parameters:
- directorieslist of path-like objects
Directories with bins to check.
- nameslist of str
Names of observables to check.
- custom_obsdict, default=None
Defines additional observables derived from existing observables. See
py_alf.analysis()
.
- Returns:
- Jupyter Widget
A graphical user interface based on ipywidgets
- py_alf.check_rebin(*args, gui='tk', **kwargs)#
Plot error vs n_rebin in a Jupyter Widget.
Calls either
py_alf.check_rebin_tk()
orpy_alf.check_rebin_ipy()
.- Parameters:
- *args
- gui{“tk”, “ipy”}
- **kwargs
- py_alf.check_rebin_tk.check_rebin_tk(directories, names, Nmax0=100, custom_obs=None)#
Plot error vs n_rebin. Opens a new window.
- Parameters:
- directorieslist of path-like objects
Directories with bins to check.
- nameslist of str
Names of observables to check.
- Nmax0int, default=100
Biggest n_rebin to consider. The default is 100.
- custom_obsdict, default=None
Defines additional observables derived from existing observables. See
py_alf.analysis()
.
- py_alf.check_rebin_ipy.check_rebin_ipy(directories, names, custom_obs=None, Nmax0=100, ncols=3)#
Plot error vs n_rebin in a Jupyter Widget.
- Parameters:
- directorieslist of path-like objects
Directories with bins to check.
- nameslist of str
Names of observables to check.
- Nmax0int, default=100
Biggest n_rebin to consider. The default is 100.
- custom_obsdict, default=None
Defines additional observables derived from existing observables. See
py_alf.analysis()
.
- Returns:
- Jupyter Widget
A graphical user interface based on ipywidgets
\(\phantom{\xi}\)