Bibliography

Bibliography#

[1]

Steve Jobs. Vintage Steve Jobs footage on Apple. Ca. 1980. Timestamp 5:27 to 7:00. URL: https://www.youtube.com/watch?v=GfxxRKBgos8&t=5m27s.

[2]

The Walter J. Brown Media Archives & Peabody Awards Collection at the University of Georgia. Memory and Imagination: New Pathways to the Library of Congress. 1992. URL: https://americanarchive.org/catalog/cpb-aacip-55-76f1wdcf.

[3]

Alexander Weiße and Holger Fehske. Exact Diagonalization Techniques, pages 529–544. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-74686-7_18.

[4]

Alexander Wietek and Andreas M. Läuchli. Sublattice coding algorithm and distributed memory parallelization for large-scale exact diagonalizations of quantum many-body systems. Phys. Rev. E, 98:033309, Sep 2018. doi:10.1103/PhysRevE.98.033309.

[5]

S. Brooks, A. Gelman, G. Jones, and X.L. Meng. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, 2011. ISBN 9781420079425. URL: https://books.google.de/books?id=qfRsAIKZ4rIC.

[6]

N. Metropolis. The Beginning of the Monte Carlo Method. Los Alamos Science, 15:125–130, 1987. URL: https://library.lanl.gov/cgi-bin/getfile?15-12.pdf.

[7]

Gordon E. Moore. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–35, 2006. doi:10.1109/N-SSC.2006.4785860.

[8]

R. Blankenbecler, D. J. Scalapino, and R. L. Sugar. Monte Carlo calculations of coupled boson-fermion systems. Phys. Rev. D, 24:2278–2286, Oct 1981. doi:10.1103/PhysRevD.24.2278.

[9]

S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. Scalettar. Numerical study of the two-dimensional Hubbard model. Phys. Rev. B, 40:506–516, Jul 1989. doi:10.1103/PhysRevB.40.506.

[10]

F.F. Assaad and H.G. Evertz. World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons. In H. Fehske, R. Schneider, and A. Weiße, editors, Computational Many-Particle Physics, volume 739 of Lect. Notes Phys., pages 277–356. Springer, Berlin Heidelberg, 2008. doi:10.1007/978-3-540-74686-7_10.

[11]

Martin Bercx, Florian Goth, Johannes S. Hofmann, and Fakher F. Assaad. The ALF (Algorithms for Lattice Fermions) project release 1.0. Documentation for the auxiliary field quantum Monte Carlo code. SciPost Phys., 3:013, 2017. doi:10.21468/SciPostPhys.3.2.013.

[12]

F. F. Assaad, M. Bercx, F. Goth, A. Götz, J. S. Hofmann, E. Huffman, Z. Liu, F. Parisen Toldin, J. S. E. Portela, and J. Schwab. The ALF (Algorithms for Lattice Fermions) project release 2.0. Documentation for the auxiliary-field quantum Monte Carlo code. SciPost Phys. Codebases, pages 1, Aug 2022. doi:10.21468/SciPostPhysCodeb.1.

[14]

Jonas Schwab, Lukas Janssen, Kai Sun, Zi Yang Meng, Igor F. Herbut, Matthias Vojta, and Fakher F. Assaad. Nematic Quantum Criticality in Dirac Systems. Phys. Rev. Lett., 128:157203, Apr 2022. arXiv:2110.02668, doi:10.1103/PhysRevLett.128.157203.

[15]

R Daou, J Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Laliberté, Nicolas Doiron-Leyraud, BJ Ramshaw, Ruixing Liang, DA Bonn, WN Hardy, and others. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature, 463(7280):519–522, 2010. doi:10.1038/nature08716.

[16]

RM Fernandes, AV Chubukov, and J Schmalian. What drives nematic order in iron-based superconductors? Nature physics, 10(2):97–104, 2014. doi:10.1038/nphys2877.

[17]

Jonas Schwab, Francesco Parisen Toldin, and Fakher F. Assaad. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice. Phys. Rev. B, 108:115151, Sep 2023. arXiv:2304.07329, doi:10.1103/PhysRevB.108.115151.

[18]

N. Read and Subir Sachdev. Some features of the phase diagram of the square lattice SU(𝑁) antiferromagnet. Nucl. Phys. B, 316(3):609–640, April 1989. doi:10.1016/0550-3213(89)90061-8.

[19]

Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki. Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys., 115(3):477–528, September 1988. doi:10.1007/BF01218021.

[20]

N. Read and Subir Sachdev. Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett., 62(14):1694–1697, April 1989. doi:10.1103/PhysRevLett.62.1694.

[21]

N. Read and Subir Sachdev. Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antiferromagnets. Phys. Rev. B, 42(7):4568–4589, September 1990. doi:10.1103/PhysRevB.42.4568.

[22]

Executable Books Community. Jupyter book. February 2024. doi:10.5281/zenodo.2561065.

[23]

S. S. Wilson. Bicycle Technology. Scientific American, pages 81–91, Mar 1973. URL: https://www.scientificamerican.com/article/bicycle-technology/.

[24]

Jonas Schwab. Online version of this thesis. 2024. URL: https://purl.org/diss-jschwab.

[25]

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi:10.1038/s41586-020-2649-2.

[26]

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a LLVM-based Python JIT compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM '15. New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2833157.2833162.

[27]

The Matplotlib Development Team. Matplotlib: Visualization with Python. August 2024. doi:10.5281/zenodo.592536.

[28]

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

[29]

Hao Shi and Shiwei Zhang. Infinite variance in fermion quantum Monte Carlo calculations. Phys. Rev. E, 93:033303, Mar 2016. doi:10.1103/PhysRevE.93.033303.

[30]

Maksim Ulybyshev and Fakher Assaad. Mitigating spikes in fermion Monte Carlo methods by reshuffling measurements. Phys. Rev. E, 106:025318, Aug 2022. doi:10.1103/PhysRevE.106.025318.

[31]

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6):1087–1092, 1953. doi:10.1063/1.1699114.

[32]

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 04 1970. doi:10.1093/biomet/57.1.97.

[33]

Lars Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev., 65:117–149, Feb 1944. doi:10.1103/PhysRev.65.117.

[34]

K. Binder. Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B Con. Mat., 43(2):119–140, 1981. doi:10.1007/BF01293604.

[35]

U. Wolff. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett., 62:361–364, January 1989. doi:10.1103/PhysRevLett.62.361.

[36]

Hale F Trotter. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4):545–551, 1959. doi:10.1090/S0002-9939-1959-0108732-6.

[37]

Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011. ISBN 9780511973765. doi:10.1017/CBO9780511973765.

[38]

Subir Sachdev. Colloquium: Order and quantum phase transitions in the cuprate superconductors. Rev. Mod. Phys., 75:913–932, Jul 2003. doi:10.1103/RevModPhys.75.913.

[39]

Hilbert v. Löhneysen, Achim Rosch, Matthias Vojta, and Peter Wölfle. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 79(3):1015, July 2007. arXiv:cond-mat/0606317, doi:10.1103/RevModPhys.79.1015.

[40]

Shinsei Ryu, Christopher Mudry, Chang-Yu Hou, and Claudio Chamon. Masses in graphenelike two-dimensional electronic systems: Topological defects in order parameters and their fractional exchange statistics. Phys. Rev. B, 80(20):205319, Nov 2009. doi:10.1103/PhysRevB.80.205319.

[41]

David J. Gross and André Neveu. Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D, 10:3235–3253, Nov 1974. doi:10.1103/PhysRevD.10.3235.

[42]

Igor F. Herbut. Interactions and Phase Transitions on Graphene's Honeycomb Lattice. Phys. Rev. Lett., 97(14):146401, October 2006. arXiv:cond-mat/0606195, doi:10.1103/PhysRevLett.97.146401.

[43]

Igor F. Herbut, Vladimir Juričić, and Oskar Vafek. Relativistic Mott criticality in graphene. Phys. Rev. B, 80(7):075432, Aug 2009. arXiv:0904.1019, doi:10.1103/PhysRevB.80.075432.

[44]

Lukas Janssen and Igor F. Herbut. Antiferromagnetic critical point on graphene's honeycomb lattice: A functional renormalization group approach. Phys. Rev. B, 89(20):205403, May 2014. arXiv:1402.6277, doi:10.1103/PhysRevB.89.205403.

[45]

Nikolai Zerf, Luminita N. Mihaila, Peter Marquard, Igor F. Herbut, and Michael M. Scherer. Four-loop critical exponents for the Gross-Neveu-Yukawa models. Phys. Rev. D, 96(9):096010, Nov 2017. arXiv:1709.05057, doi:10.1103/PhysRevD.96.096010.

[46]

Lukas Janssen, Igor F. Herbut, and Michael M. Scherer. Compatible orders and fermion-induced emergent symmetry in Dirac systems. Phys. Rev. B, 97:041117, Jan 2018. doi:10.1103/PhysRevB.97.041117(R).

[47]

Shouryya Ray, Bernhard Ihrig, Daniel Kruti, John A. Gracey, Michael M. Scherer, and Lukas Janssen. Fractionalized quantum criticality in spin-orbital liquids from field theory beyond the leading order. Phys. Rev. B, 103(15):155160, Apr 2021. arXiv:2101.10335, doi:10.1103/PhysRevB.103.155160.

[48]

Vadim Oganesyan, Steven A. Kivelson, and Eduardo Fradkin. Quantum theory of a nematic Fermi fluid. Phys. Rev. B, 64:195109, Oct 2001. doi:10.1103/PhysRevB.64.195109.

[49]

Yoni Schattner, Samuel Lederer, Steven A. Kivelson, and Erez Berg. Ising Nematic Quantum Critical Point in a Metal: A Monte Carlo Study. Phys. Rev. X, 6:031028, Aug 2016. doi:10.1103/PhysRevX.6.031028.

[50]

Matthias Vojta, Ying Zhang, and Subir Sachdev. Quantum Phase Transitions in 𝑑-Wave Superconductors. Phys. Rev. Lett., 85:4940–4943, Dec 2000. arXiv:cond-mat/0007170, doi:10.1103/PhysRevLett.85.4940.

[51]

Matthias Vojta, Ying Zhang, and Subir Sachdev. Renormalization group analysis of quantum critical points in 𝑑-wave superconductors. Int. J. Mod. Phys. B, 14(29n31):3719–3734, 2000. doi:10.1142/S0217979200004271.

[52]

Yejin Huh and Subir Sachdev. Renormalization group theory of nematic ordering in 𝑑-wave superconductors. Phys. Rev. B, 78:064512, Aug 2008. doi:10.1103/PhysRevB.78.064512.

[53]

Eun-Ah Kim, Michael J. Lawler, Paul Oreto, Subir Sachdev, Eduardo Fradkin, and Steven A. Kivelson. Theory of the nodal nematic quantum phase transition in superconductors. Phys. Rev. B, 77:184514, May 2008. doi:10.1103/PhysRevB.77.184514.

[54]

Jing Wang. Velocity renormalization of nodal quasiparticles in 𝑑-wave superconductors. Phys. Rev. B, 87:054511, Feb 2013. doi:10.1103/PhysRevB.87.054511.

[55]

Shouryya Ray and Lukas Janssen. Gross-Neveu-Heisenberg criticality from competing nematic and antiferromagnetic orders in bilayer graphene. Phys. Rev. B, 104:045101, Jul 2021. doi:10.1103/PhysRevB.104.045101.

[56]

Xiao Yan Xu, Kai Sun, Yoni Schattner, Erez Berg, and Zi Yang Meng. Non-Fermi Liquid at 2+1 D Ferromagnetic Quantum Critical Point. Phys. Rev. X, 7:031058, Sep 2017. doi:10.1103/PhysRevX.7.031058.

[57]

Yuan-Yao He, Xiao Yan Xu, Kai Sun, Fakher F. Assaad, Zi Yang Meng, and Zhong-Yi Lu. Dynamical generation of topological masses in Dirac fermions. Phys. Rev. B, 97:081110(R), Feb 2018. doi:10.1103/PhysRevB.97.081110.

[58]

Douglas J. Scalapino, Steven R. White, and Shoucheng Zhang. Insulator, metal, or superconductor: The criteria. Phys. Rev. B, 47:7995–8007, Apr 1993. doi:10.1103/PhysRevB.47.7995.

[59]

F. F. Assaad, W. Hanke, and D. J. Scalapino. Temperature derivative of the superfluid density and flux quantization as criteria for superconductivity in two-dimensional Hubbard models. Phys. Rev. B, 50:12835–12850, Nov 1994. doi:10.1103/PhysRevB.50.12835.

[60]

Tobias Meng, Achim Rosch, and Markus Garst. Quantum criticality with multiple dynamics. Phys. Rev. B, 86:125107, Sep 2012. doi:10.1103/PhysRevB.86.125107.

[61]

Lukas Janssen and Igor F. Herbut. Nematic quantum criticality in three-dimensional Fermi system with quadratic band touching. Phys. Rev. B, 92:045117, Jul 2015. doi:10.1103/PhysRevB.92.045117.

[62]

Igor Herbut. A Modern Approach to Critical Phenomena. Cambridge University Press, 2007. doi:10.1017/CBO9780511755521.

[63]

Yuzhi Liu, Wei Wang, Kai Sun, and Zi Yang Meng. Designer Monte Carlo simulation for the Gross-Neveu-Yukawa transition. Phys. Rev. B, 101:064308, Feb 2020. doi:10.1103/PhysRevB.101.064308.

[64]

Bitan Roy, Vladimir Juričić, and Igor F. Herbut. Emergent Lorentz symmetry near fermionic quantum critical points in two and three dimensions. J. High Energ. Phys., 2016(04):18, 2016. doi:10.1007/JHEP04(2016)018.

[65]

Adam Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza. Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models. Phys. Rev. X, 5:041048, Dec 2015. doi:10.1103/PhysRevX.5.041048.

[66]

Adam Nahum. Note on Wess-Zumino-Witten models and quasiuniversality in 2+1 dimensions. Phys. Rev. B, 102:201116, Nov 2020. doi:10.1103/PhysRevB.102.201116.

[67]

Zi-Xiang Li, Yi-Fan Jiang, and Hong Yao. Majorana-Time-Reversal Symmetries: A Fundamental Principle for Sign-Problem-Free Quantum Monte Carlo Simulations. Phys. Rev. Lett., 117:267002, Dec 2016. doi:10.1103/PhysRevLett.117.267002.

[68]

Zi-Xiang Li, Yi-Fan Jiang, and Hong Yao. Fermion-sign-free Majarana-quantum-Monte-Carlo studies of quantum critical phenomena of Dirac fermions in two dimensions. New Journal of Physics, 17(8):085003, 2015. doi:10.1088/1367-2630/17/8/085003.

[69]

Emilie Fulton Huffman and Shailesh Chandrasekharan. Solution to sign problems in half-filled spin-polarized electronic systems. Phys. Rev. B, 89:111101(R), Mar 2014. doi:10.1103/PhysRevB.89.111101.

[70]

Congjun Wu and Shou-Cheng Zhang. Sufficient condition for absence of the sign problem in the fermionic quantum Monte Carlo algorithm. Phys. Rev. B, 71:155115, Apr 2005. doi:10.1103/PhysRevB.71.155115.

[71]

N Goldenfeld. Lectures on Phase Transitions and the Renormalization Group (1st ed.). CRC Press, (1992).

[72]

Zi Hong Liu, Xiao Yan Xu, Yang Qi, Kai Sun, and Zi Yang Meng. Elective-momentum ultrasize quantum Monte Carlo method. Phys. Rev. B, 99:085114, Feb 2019. doi:10.1103/PhysRevB.99.085114.

[73]

H T Diep. Frustrated Spin Systems. World Scientific, 3rd edition, 2020. doi:10.1142/11660.

[74]

C. Castelnovo, R. Moessner, and S.L. Sondhi. Spin Ice, Fractionalization, and Topological Order. Annual Review of Condensed Matter Physics, 3(1):35–55, 2012. doi:10.1146/annurev-conmatphys-020911-125058.

[75]

Leon Balents. Spin liquids in frustrated magnets. Nature, 464:199–208, 2010. doi:10.1038/nature08917.

[76]

T. Senthil, Ashvin Vishwanath, Leon Balents, Subir Sachdev, and Matthew P. A. Fisher. Deconfined Quantum Critical Points. Science, 303(5663):1490–1494, 2004. doi:10.1126/science.1091806.

[77]

H. Nishimori. Statistical Physics of Spin Glasses and Information Processing: An Introduction. International series of monographs on physics. Oxford University Press, 2001. ISBN 9780198509400. URL: https://global.oup.com/academic/product/statistical-physics-of-spin-glasses-and-information-processing-9780198509400.

[78]

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. ISBN 9781107002173. doi:10.1017/CBO9780511976667.

[79]

Anders W. Sandvik. Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model. Phys. Rev. B, 56:11678–11690, Nov 1997. doi:10.1103/PhysRevB.56.11678.

[80]

Matteo Calandra Buonaura and Sandro Sorella. Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers. Phys. Rev. B, 57:11446–11456, May 1998. doi:10.1103/PhysRevB.57.11446.

[81]

R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S.-W. Cheong, and Z. Fisk. Spin Waves and Electronic Interactions in La₂CuO₄. Phys. Rev. Lett., 86:5377–5380, Jun 2001. doi:10.1103/PhysRevLett.86.5377.

[82]

I. A. Zaliznyak, L.-P. Regnault, and D. Petitgrand. Neutron-scattering study of the dynamic spin correlations in CsNiCl3 above Néel ordering. Phys. Rev. B, 50:15824–15833, Dec 1994. doi:10.1103/PhysRevB.50.15824.

[83]

Kliment I Kugel' and D I Khomskiĭ. The Jahn-Teller effect and magnetism: transition metal compounds. Soviet Physics Uspekhi, 25(4):231, 1982. doi:10.1070/PU1982v025n04ABEH004537.

[84]

K. I. Kugel, D. I. Khomskii, A. O. Sboychakov, and S. V. Streltsov. Spin-orbital interaction for face-sharing octahedra: Realization of a highly symmetric SU(4) model. Phys. Rev. B, 91:155125, Apr 2015. doi:10.1103/PhysRevB.91.155125.

[85]

S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera, M. A. Green, and C. Broholm. Spin-Orbital Short-Range Order on a Honeycomb-Based Lattice. Science, 336(6081):559–563, 2012. doi:10.1126/science.1212154.

[86]

Philippe Corboz, Miklós Lajkó, Andreas M. Läuchli, Karlo Penc, and Frédéric Mila. Spin-Orbital Quantum Liquid on the Honeycomb Lattice. Phys. Rev. X, 2:041013, Nov 2012. doi:10.1103/PhysRevX.2.041013.

[87]

C. Wu, J. P. Hu, and S. C. Zhang. Exact SO(5) Symmetry in the Spin-3/2 Fermionic System. Phys. Rev. Lett., 91:186402, 2003. doi:10.1103/PhysRevLett.91.186402.

[88]

A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey. Two-orbital SU(𝑁) magnetism with ultracold alkaline-earth atoms. Nat. Phys., 6:289–295, 2010. doi:10.1038/nphys1535.

[89]

F. D. M. Haldane. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State. Phys. Rev. Lett., 50:1153–1156, April 1983. doi:10.1103/PhysRevLett.50.1153.

[90]

F. D. M. Haldane. O(3) nonlinear σ model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett., 61(8):1029–1032, August 1988. doi:10.1103/PhysRevLett.61.1029.

[91]

Anders W. Sandvik. Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model with Four-Spin Interactions. Phys. Rev. Lett., 98:227202, Jun 2007. doi:10.1103/PhysRevLett.98.227202.

[92]

S Sorella, S Baroni, R Car, and M Parrinello. A Novel Technique for the Simulation of Interacting Fermion Systems. Europhysics Letters (EPL), 8(7):663–668, apr 1989. doi:10.1209/0295-5075/8/7/014.

[93]

F. F. Assaad. Phase diagram of the half-filled two-dimensional SU(𝑁) Hubbard-Heisenberg model: A quantum Monte Carlo study. Phys. Rev. B, 71(7):075103, February 2005. arXiv:cond-mat/0406074, doi:10.1103/PhysRevB.71.075103.

[94]

John Demetrius Vergados. Group and Representation Theory. World Scientific, February 2017. ISBN 9789813202443. doi:10.1142/10325.

[95]

G Sugiyama and S.E Koonin. Auxiliary field Monte-Carlo for quantum many-body ground states. Annals of Physics, 168(1):1–26, 1986. doi:10.1016/0003-4916(86)90107-7.

[96]

Z. Wang, F. F. Assaad, and F. Parisen Toldin. Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions. Phys. Rev. E, 96(4):042131, October 2017. arXiv:1706.01874, doi:10.1103/PhysRevE.96.042131.

[97]

Tong Shen, Yuan Liu, Yang Yu, and Brenda M. Rubenstein. Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble. J. Chem. Phys., 153(20):204108, November 2020. arXiv:2010.09813, doi:10.1063/5.0026606.

[98]

Howard E. Haber. Useful relations among the generators in the defining and adjoint representations of SU(𝑁). SciPost Phys. Lect. Notes, January 2021. arXiv:1912.13302, doi:10.21468/SciPostPhysLectNotes.21.

[99]

K. Pilch and A. N. Schellekens. Formulas for the eigenvalues of the Laplacian on tensor harmonics on symmetric coset spaces. J. Math. Phys., 25(12):3455–3459, December 1984. doi:10.1063/1.526101.

[100]

Nisheeta Desai and Ribhu K. Kaul. Spin-𝑆 Designer Hamiltonians and the Square Lattice 𝑆=1 Haldane Nematic. Phys. Rev. Lett., 123(10):107202, September 2019. arXiv:1904.09629, doi:10.1103/PhysRevLett.123.107202.

[101]

S. Caracciolo and A. Pelissetto. Corrections to finite-size scaling in the lattice N-vector model for 𝑁=∞. Phys. Rev. D, 58(10):105007, November 1998. arXiv:hep-lat/9804001, doi:10.1103/PhysRevD.58.105007.

[102]

F. Parisen Toldin, M. Hohenadler, F. F. Assaad, and I. F. Herbut. Fermionic quantum criticality in honeycomb and π-flux Hubbard models: Finite-size scaling of renormalization-group-invariant observables from quantum Monte Carlo. Phys. Rev. B, 91(16):165108, April 2015. arXiv:1411.2502, doi:10.1103/PhysRevB.91.165108.

[103]

F. F. Assaad and I. F. Herbut. Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice. Phys. Rev. X, 3(3):031010, July 2013. arXiv:1304.6340, doi:10.1103/PhysRevX.3.031010.

[104]

F. Parisen Toldin, F. F. Assaad, and S. Wessel. Critical behavior in the presence of an order-parameter pinning field. Phys. Rev. B, 95(1):014401, January 2017. arXiv:1607.04270, doi:10.1103/PhysRevB.95.014401.

[105]

Arun Paramekanti and J B Marston. SU(𝑁) quantum spin models: a variational wavefunction study. Journal of Physics: Condensed Matter, 19(12):125215, 2007. doi:10.1088/0953-8984/19/12/125215.

[106]

Francisco H. Kim, Fakher F. Assaad, Karlo Penc, and Frédéric Mila. Dimensional crossover in the SU(4) Heisenberg model in the six-dimensional antisymmetric self-conjugate representation revealed by quantum Monte Carlo and linear flavor-wave theory. Phys. Rev. B, 100:085103, Aug 2019. doi:10.1103/PhysRevB.100.085103.

[107]

Da Wang, Yi Li, Zi Cai, Zhichao Zhou, Yu Wang, and Congjun Wu. Competing Orders in the 2D Half-Filled SU(2𝑁) Hubbard Model through the Pinning-Field Quantum Monte Carlo Simulations. Phys. Rev. Lett., 112:156403, Apr 2014. doi:10.1103/PhysRevLett.112.156403.

[108]

A. V. Onufriev and J. B. Marston. Enlarged symmetry and coherence in arrays of quantum dots. Phys. Rev. B, 59:12573–12578, May 1999. doi:10.1103/PhysRevB.59.12573.

[109]

R. Assaraf, P. Azaria, E. Boulat, M. Caffarel, and P. Lecheminant. Dynamical Symmetry Enlargement versus Spin-Charge Decoupling in the One-Dimensional SU(4) Hubbard Model. Phys. Rev. Lett., 93:016407, Jul 2004. doi:10.1103/PhysRevLett.93.016407.

[110]

Nicholas Pomata and Tzu-Chieh Wei. Demonstrating the Affleck-Kennedy-Lieb-Tasaki Spectral Gap on 2D Degree-3 Lattices. Phys. Rev. Lett., 124:177203, Apr 2020. doi:10.1103/PhysRevLett.124.177203.

[111]

Didier Poilblanc, Norbert Schuch, and J. Ignacio Cirac. Field-induced superfluids and Bose liquids in projected entangled pair states. Phys. Rev. B, 88:144414, Oct 2013. doi:10.1103/PhysRevB.88.144414.

[112]

Ribhu K. Kaul and Anders W. Sandvik. Lattice Model for the SU(𝑁) Néel to Valence-Bond Solid Quantum Phase Transition at Large 𝑁. Phys. Rev. Lett., 108:137201, Mar 2012. doi:10.1103/PhysRevLett.108.137201.

[113]

Michelle Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus Westerlund, and Stuart Cheshire. Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry. RFC 6335, August 2011. URL: https://www.rfc-editor.org/info/rfc6335, doi:10.17487/RFC6335.

[114]

C. J. Geyer. Markov Chain Monte Carlo maximum likelihood. In Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, 156–163. New York, 1991. American Statistical Association. URL: https://hdl.handle.net/11299/58440.

[115]

Koji Hukushima and Koji Nemoto. Exchange Monte Carlo Method and Application to Spin Glass Simulations. Journal of the Physical Society of Japan, 65(6):1604–1608, 1996. doi:10.1143/JPSJ.65.1604.

[116]

B. Efron and C. Stein. The Jackknife Estimate of Variance. The Annals of Statistics, 9(3):586 – 596, 1981. doi:10.1214/aos/1176345462.

[117]

Igor F. Herbut and Lukas Janssen. Topological Mott Insulator in Three-Dimensional Systems with Quadratic Band Touching. Phys. Rev. Lett., 113(10):106401, Sep 2014. arXiv:1404.5721, doi:10.1103/PhysRevLett.113.106401.

[118]

B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1994. ISBN 9780412042317. URL: https://books.google.de/books?id=gLlpIUxRntoC.

[119]

I. Affleck and J. B. Marston. Large-𝑁 limit of the Heisenberg-Hubbard model: Implications for high-Tc superconductors. Phys. Rev. B, 37:3774–3777, March 1988. doi:10.1103/PhysRevB.37.3774.

[120]

Zhenjiu Wang, Michael P. Zaletel, Roger S. K. Mong, and Fakher F. Assaad. Phases of the (2+1) Dimensional SO(5) Nonlinear Sigma Model with Topological Term. Phys. Rev. Lett., 126:045701, Jan 2021. doi:10.1103/PhysRevLett.126.045701.

\(\phantom{\xi}\)