
Julius-Maximilians-Universität Würzburg
Graduate School of Science and Technology

Doctoral thesis / Dissertation
for the doctoral degree / zur Erlangung des Doktorgrads

Doctor rerum naturalium (Dr. rer. nat.)

Phases and phase transitions in SU(𝑁) spin and Dirac systems:
Auxiliary field quantum Monte Carlo studies

Phasen und Phasenübergänge in SU(𝑁)-Spin- und Dirac-Systemen:
Hilfsfeld Quanten Monte Carlo Studien

Submitted by / Vorgelegt von
Jonas Schwab
from / aus

Thüngersheim
Würzburg, 2024

Git commit: 1801464

Submitted on / Eingereicht am: .

Stamp / Stempel Graduate School

Members of thesis committee /Mitglieder des Promotionskomitees

Chairperson / Vorsitz: .

1. Reviewer and Examiner / 1. Gutachter und Prüfer: .

2. Reviewer and Examiner / 2. Gutachter und Prüfer: .

3. Examiner / 3. Prüfer: .

Additional Examiners /Weitere Prüfer: .

. .

Day of thesis defense / Tag des Promotionskolloquiums: .

i

ii

Abstract

This thesis presents three interrelated projects centered around Quantum Monte Carlo (QMC) simulations and the
development of computational tools to study strongly correlated quantum systems. Two of these projects leverage the
QMCpackageAlgorithms for Lattice Fermions (ALF) to investigate critical phenomena in Dirac fermions and SU(𝑁)-
symmetric antiferromagnetic spin models, respectively. The third project introduces pyALF, a Python package that
simplifies and enhances the use of ALF, making advanced simulations more accessible and efficient.
The first project explores nematic quantum phase transitions in Dirac fermions. The focus lies on two models with
either 𝐶2𝑣 or 𝐶4𝑣 lattice point-group symmetry, respectively, which are spontaneously broken in the ordered phase,
allowing for meandering Dirac points. These models are specifically designed to be free of the negative sign prob-
lem, allowing for efficient QMC simulations. My numerically obtained results, complemented by a collaborator’s
𝜖-expansion renormalization group study, show that both models undergo continuous phase transitions. In contrast
to generic Gross-Neveu dynamical mass generation, the quantum critical regime is characterized by large velocity
anisotropies, with fixed-point values being approached very slowly. Due to this slow renormalization group flow, both
experimental and numerical investigations will not be representative of the infrared fixed point, but of a quasiuni-
versal regime where the drift of the exponents tracks the velocity anisotropy. Notably, even though the 𝜖-expansion
finds qualitatively distinct fixed points for the two investigated models, the numerical investigation finds no distinc-
tion in the respective exponents. Therefore, it seems that the quasiuniversial regime is at least close to the ultraviolet
beginning identical for both models, even though their infrared universality is different.
The second project investigates the ground state phase diagram of an SU(𝑁)-symmetric antiferromagnetic spin model
on a square lattice. Each site hosts an irreducible representation of SU(𝑁) described by a square Young tableau
with 𝑁/2 rows and 2𝑆 columns. Negative sign-free QMC simulations are feasible for all values of 𝑆 and even
values of 𝑁 , allowing for a comprehensive exploration of the phase diagram. In the large-𝑁 limit, the saddle point
approximation favors a four-fold degenerate valence bond solid (VBS) phase, while in the large-𝑆 limit, semi-classical
approximations predict Néel order. Along a line defined by𝑁 = 8𝑆+2 in the 𝑆 versus𝑁 phase diagram, we observe
a rich variety of phases. For 𝑆 = 1/2 and 3/2, the system forms a four-fold degenerate VBS state, while for 𝑆 = 1,
we identify a two-fold degenerate spin nematic state that breaks the 𝐶4 lattice symmetry down to 𝐶2. At 𝑆 = 2,
we observe a unique symmetry-protected topological state, characterized by a dimerized SU(18) boundary state,
reminiscent of the two-dimensional Affleck-Kennedy-Lieb-Tasaki (AKLT) state. These phases proximate to the
Néel state align with the theoretical framework of monopole condensation of the antiferromagnetic order parameter,
with degeneracies following a mod(4, 2𝑆) rule.
The third project documents the development of pyALF, a Python-based package designed to lower the barrier of
entry for users new to ALF and enhance the productivity of experienced ALF users by providing a streamlined
workflow for setting up and analyzing QMC simulations. Through easily reproducible examples, the documentation
introduces key concepts such as preparing, executing and postprocessing simulations. The postprocessing tools in
pyALF leverage Python’s dynamic capabilities, enabling users to quickly define custom observables, such as corre-
lation ratios and other complex order parameters. The package also allows for interactive checks of warmup and
autocorrelation times, with a convenient way to adjust corresponding analysis parameters. Furthermore, the anal-
ysis tools allow researchers the implementation of improved estimators with minimal effort, leveraging e.g. lattice
point-group symmetries to improve the accuracy of their results. By utilizing Python’s extensive libraries for data
analysis and visualization, pyALF enhances the workflow, with data conveniently stored in pandas DataFrames for
easy access.
Together, these three projects offer new insights into the study of highly correlated quantum systems and provide
powerful computational tools that significantly advance numerical approaches in condensed matter physics.

iii

iv

Zusammenfassung

Diese Dissertation präsentiert drei miteinander verbundene Projekte, die sich um Quantum-Monte-Carlo-
Simulationen (QMC-Simulationen) und die Entwicklung von Rechenwerkzeugen zur Untersuchung stark korrelier-
ter Quantensysteme drehen. Zwei dieser Projekte nutzen das QMC-Paket Algorithms for Lattice Fermions (ALF)
zur Untersuchung kritischer Phänomene in Dirac-Fermionen bzw. SU(𝑁)-symmetrischen antiferromagnetischen
Spin-Modellen. Das dritte Projekt stellt pyALF vor, ein Python-Paket, das die Nutzung von ALF vereinfacht und
verbessert, um komplexe Simulationen zugänglicher und effizienter zu machen.
Das erste Projekt untersucht nematische Quantenphasenübergänge in Dirac-Fermionen. Der Fokus liegt auf zwei
Modellen mit 𝐶2𝑣- bzw. 𝐶4𝑣-Gitterpunktgruppensymmetrie, die in der geordneten Phase spontan gebrochen wer-
den, was zu mäandernden Dirac-Punkten führt. Diese Modelle sind speziell so entworfen, dass sie frei vom negativen
Vorzeichenproblem sind, was effiziente QMC-Simulationen ermöglicht. Meine numerische Analyse, ergänzt durch
eine 𝜖-Entwicklung-Renormierungsgruppenstudie eines Kollaborators, zeigt, dass beideModelle kontinuierliche Pha-
senübergänge durchlaufen. Im Gegensatz zur generischen dynamischen Massengenerierung nach Gross-Neveu ist das
quantenkritische Regime durch große Geschwindigkeitsanisotropien gekennzeichnet, wobei die Fixpunktwerte nur
sehr langsam erreicht werden. Aufgrund dieses langsamen Flusses in der Renormierungsgruppe sind sowohl experi-
mentelle als auch numerische Untersuchungen nicht repräsentativ für den infraroten Fixpunkt, sondern für ein quasi-
universelles Regime, in dem das Exponenten-Driftverhalten der Geschwindigkeitsanisotropie folgt. Bemerkenswert
ist, dass die 𝜖-Entwicklung qualitativ unterschiedliche Fixpunkte für die beiden untersuchten Modelle findet, die
numerische Untersuchung jedoch innerhalb der Fehlergrenzen keinen Unterschied in den Exponenten erkennt. Es
scheint daher, dass das quasi-universelle Regime zumindest nahe dem ultravioletten Beginn für beide Modelle iden-
tisch ist, obwohl ihre infrarote Universalität unterschiedlich ist.
Das zweite Projekt untersucht das Grundzustands-Phasendiagramm eines SU(𝑁)-symmetrischen antiferromagneti-
schen Spin-Modells auf einem quadratischen Gitter. Jeder Gitterplatz trägt eine irreduzible Darstellung von SU(𝑁),
die durch ein Young-Tableau mit 𝑁/2 Reihen und 2𝑆 Spalten beschrieben wird. Vorzeichenproblem-freie QMC-
Simulationen sind für alle Werte von 𝑆 und gerade Werte von 𝑁 möglich, was eine umfassende Erforschung des
Phasendiagramms erlaubt. Im Grenzfall großer 𝑁 begünstigt die Sattelpunkt-Näherung eine vierfach entartete Va-
lenzbindungsfestkörperphase (VBS), während imGrenzfall großer𝑆 semi-klassische Näherungen eine Néel-Ordnung
vorhersagen. Entlang einer Linie, definiert durch 𝑁 = 8𝑆 +2 im 𝑆-gegen-𝑁 -Phasendiagramm, beobachten wir eine
Vielzahl von Phasen. Für 𝑆 = 1/2 und 3/2 bildet das System einen vierfach entarteten VBS-Zustand, während wir
für 𝑆 = 1 einen zweifach entarteten Spin-nematischen Zustand identifizieren, der die 𝐶4-Gittersymmetrie auf 𝐶2
reduziert. Bei 𝑆 = 2 beobachten wir einen einzigartigen symmetriegeschützten topologischen Zustand, der durch
einen dimerisierten SU(18)-Randzustand gekennzeichnet ist, der an den zweidimensionalen Affleck-Kennedy-Lieb-
Tasaki (AKLT)-Zustand erinnert. Diese Phasen in der Nähe des Néel-Zustands stimmen mit dem theoretischen
Rahmen der Monopolkondensation des antiferromagnetischen Ordnungsparameters überein, wobei die Entartungen
einer mod(4, 2𝑆)-Regel folgen.
Das dritte Projekt dokumentiert die Entwicklung von pyALF, einem Python-basierten Paket, das die Einstiegshürde
für ALF-Nutzer:innen senkt und die Produktivität erfahrener ALF-Nutzer:innen erhöht, indem es einen optimierten
Arbeitsablauf für die Einrichtung und Analyse von QMC-Simulationen bietet. Durch leicht reproduzierbare Beispiele
führt die Dokumentation in zentrale Konzepte ein, wie die Vorbereitung von Simulationen, deren Ausführung und
die Auswertung der Ergebnisse. Die Auswerungstools in pyALF nutzen die dynamischen Fähigkeiten von Python,
wodurch Benutzer schnell benutzerdefinierte Observable wie Korrelationsbrüche (correlation ratios) und andere kom-
plexe Ordnungsparameter definieren können. Das Paket ermöglicht auch interaktive Überprüfungen von Aufwärm-
und Autokorrelationszeiten sowie eine einfache Anpassung der entsprechenden Analyseparameter. Darüber hinaus
erlauben die Analysetools Forscher:innen die Implementierung verbesserter Schätzer (improved estimators) mit mi-
nimalem Aufwand, indem beispielsweise Gitterpunktgruppensymmetrien genutzt werden, um die Genauigkeit der
Ergebnisse zu verbessern. Durch die Nutzung der umfangreichen Bibliotheken von Python für Datenanalyse und
-visualisierung verbessert pyALF den Arbeitsablauf, wobei die Daten bequem in pandas DataFrames gespeichert
werden, um einen einfachen Zugriff zu ermöglichen.
Diese drei Projekte bieten neue Einblicke in die Untersuchung stark korrelierter Quantensysteme und stellen leis-
tungsstarke Rechenwerkzeuge bereit, die numerische Ansätze in der Festkörperphysik erheblich voranbringen.

v

vi

CONTENTS

Abstract iii

Zusammenfassung v

Contents x

1 Introduction 1
1.1 A brief (Auxiliary Field Quantum) Monte Carlo primer . 2

1.1.1 Stochastic integration . 3
1.1.1.1 Example: Stochastically calculating a 1d integral 4
1.1.1.2 Example: Fat tails . 7

1.1.2 Markov chain Monte Carlo . 8
1.1.2.1 Caveats: Autocorrelation and Warmup . 9
1.1.2.2 Metropolis-Hastings algorithm . 10
1.1.2.3 Example: One-dimensional Ising chain . 10
1.1.2.4 Example in two dimensions: Critical slowing down 12

1.1.2.4.1 Solving critical slowing down with the Wolff algorithm 15
1.1.3 Making a classical computer understand quantum models 17
1.1.4 Negative sign problem . 19
1.1.5 Auxiliary field QMC . 19

Projects 23
2 Nematic quantum criticality in Dirac systems 23

2.1 Introduction . 23
2.2 Models . 24

2.2.1 Fourier transformed models . 25
2.2.2 Symmetries . 26

2.2.2.1 The 𝐶2𝑣 model . 26
2.2.2.2 The 𝐶4𝑣 model . 27

2.3 Lattice mean-field theory . 28
2.4 Continuum field theory . 32

2.4.1 The 𝐶2𝑣 model . 33
2.4.2 The 𝐶4𝑣 model . 33
2.4.3 Finalized field theory . 34

2.5 𝜖 expansion . 34
2.6 QMC setup . 35

2.6.1 Absence of negative sign problem . 35
2.6.1.1 The 𝐶2𝑣 model . 35
2.6.1.2 The 𝐶4𝑣 model . 36

2.7 QMC Observables . 38
2.7.1 Bosonic degrees of freedom . 38

2.7.1.1 Order parameters . 38

vii

2.7.1.2 RG-invariant quantities . 38
2.7.1.3 Derivative of the free energy . 39

2.7.2 Fermionic degrees of freedom . 39
2.7.2.1 Fermionic single-particle gap . 39
2.7.2.2 Fermi velocity anisotropy 𝑣⟂/𝑣∥ . 41

2.8 QMC results . 41
2.8.1 Overview . 42
2.8.2 Critical exponents . 42

2.8.2.1 Correlation length exponent 𝜈 from RG invariant quantities. 42
2.8.2.2 Scaling dimensions and scaling anisotropy . 46
2.8.2.3 Dynamical exponent 𝑧 . 47

2.8.3 Odd-even effects . 48
2.9 Summary . 50

3 Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice 51
3.1 Introduction . 51
3.2 General formulation of the Hamiltonian . 53
3.3 QMC formulation . 55

3.3.1 Fermionic representation . 55
3.3.2 Test of projections . 57

3.4 Results . 58
3.4.1 Order parameters and phases . 58
3.4.2 𝑆 = 1/2 . 61
3.4.3 𝑆 = 1 . 63
3.4.4 𝑆 = 3/2 . 65
3.4.5 𝑆 = 2 . 67

3.5 Summary . 69

4 pyALF Documentation 71
4.1 Prerequisites and installation . 71

4.1.1 ALF prerequisites . 71
4.1.2 pyALF installation . 72

4.1.2.1 Development installation . 73
4.1.3 Setting ALF directory through environment variable . 73
4.1.4 Check setup . 73
4.1.5 Using Jupyter Notebooks . 74
4.1.6 Ready-to-use container image . 74
4.1.7 Some SSH port forwarding applications . 75

4.1.7.1 Use remote forwarding to circumvent restrictive firewalls 75
4.1.7.2 Using Jupyter via SSH tunnel . 76
4.1.7.3 Using SSH in Visual Studio Code . 76

4.2 Usage . 76
4.2.1 Minimal example . 77
4.2.2 Compiling and running ALF . 81

4.2.2.1 Class ALF_source . 81
4.2.2.2 Class Simulation . 85
4.2.2.3 Specifying parameters . 87
4.2.2.4 Series of MPI runs . 88
4.2.2.5 Parallel Tempering . 92
4.2.2.6 Only preparing runs . 94

4.2.3 Postprocessing . 96
4.2.3.1 Basic analysis . 96

4.2.3.1.1 Get analysis results . 98
4.2.3.2 Custom/Derived Observables . 104
4.2.3.3 Checking warmup and autocorrelation times . 109

4.2.3.3.1 Preparations . 109
4.2.3.3.2 Check warmup . 111
4.2.3.3.3 Check rebin . 112

viii

4.2.3.4 Symmetrization of correlations on the lattice 114
4.2.4 Command line tools . 117

4.2.4.1 alf_run.py . 117
4.2.4.2 alf_postprocess.py . 119

4.3 Reference . 121
4.3.1 Class ALF_source . 122
4.3.2 Class Simulation . 122
4.3.3 High-level analysis functions . 124
4.3.4 Class Lattice . 126
4.3.5 Low-level analysis functions . 128
4.3.6 Utility functions . 132
4.3.7 Command line tools . 133

4.3.7.1 minimal_ALF_run . 133
4.3.7.2 alf_run . 133

4.3.7.2.1 Named Arguments . 133
4.3.7.3 alf_postprocess . 133

4.3.7.3.1 Positional Arguments . 134
4.3.7.3.2 Named Arguments . 134

4.3.7.4 alf_bin_count . 134
4.3.7.4.1 Positional Arguments . 134

4.3.7.5 alf_show_obs . 135
4.3.7.5.1 Positional Arguments . 135

4.3.7.6 alf_del_bins . 135
4.3.7.6.1 Positional Arguments . 135
4.3.7.6.2 Named Arguments . 135

4.3.7.7 alf_test_branch . 135
4.3.7.7.1 Named Arguments . 135

5 Conclusions 137
5.1 Outlook for (py)ALF . 138

Appendix 141
A Appendix to “Nematic quantum criticality in Dirac systems” 141

A.1 Renormalization group flow . 141
A.2 pyALF Example . 144

A.2.1 Running ALF . 144
A.2.1.1 ALF_source . 144
A.2.1.2 Perform simulations . 146
A.2.1.3 Prepare directories for simulation . 147

A.2.2 Postprocessing . 149
A.2.2.1 Find QMC data . 149
A.2.2.2 Custom observables . 150
A.2.2.3 Check warmup and autocorrelation times . 152
A.2.2.4 Error analysis . 153
A.2.2.5 Read analysis results . 154
A.2.2.6 Plot order parameter . 155
A.2.2.7 Plot RG-invariant quantities . 155
A.2.2.8 Data collapse . 156

A.2.2.8.1 Manual data collapse . 156
A.2.2.8.2 Data collapse fit . 157

A.2.2.9 Plot correlation . 158
A.2.2.9.1 Accessing elements of the dataframe 158
A.2.2.9.2 Creating Lattice object . 160
A.2.2.9.3 Spin-Spin correlation deep in ordered phase 160
A.2.2.9.4 Spin-Spin correlation in disordered phase 161

A.2.2.10 Fermionic dispersion . 162
A.3 Source code of data collapse functions . 168

ix

Dissertation Jonas Schwab

A.4 Source code for exponential fit of Green function . 173
A.5 Other values for 𝑁𝜎 and 𝜉 . 176

A.5.1 The 𝐶2𝑣 model . 177
A.5.2 The 𝐶4𝑣 model . 177

B Appendix to spin 𝑆, SU(𝑁) antiferromagnet 181
B.1 The quadratic Casimir eigenvalue in terms of the Young tableau 181
B.2 Bound on the eigenvalue of the quadratic Casimir operator . 183
B.3 Systematic errors . 184
B.4 Bounds on the bond observable . 186

Acknowledgments 187

Bibliography 189

Affidavit / Eidesstattliche Erklärung 197

x CONTENTS

CHAPTER

ONE

INTRODUCTION

Traditionally, there are two major paradigms in science: The theoretical and the experimental approach. But one
might argue that with the advent of computers, a third paradigm, namely computation, has emerged. These “bicycles
for our minds”, as Steve Jobs used to call computers1 [1, 2], opened up completely new possibilities in research.
With the development of computational tools, theoreticians have gained the ability to generate data themselves, an
approach I utilized extensively in the research presented in this thesis.
Both research projects investigate the ground states of interacting quantum systems, but solving such systems is a hard
problem. Generically, one needs to consider all possible configurations to solve the system.
Many common problems in computational science amount to summation over a high-dimensional space, which leads
to a hard challenge: The volume of a space scales exponentially with the number of dimensions and therefore (when
utilizing a direct approach) the computational effort as well. For bigger systems, this quickly becomes unfeasible, as
the following example shows: Consider 𝑁S spins, each having two possible states, up or down. This amounts to the
simplest 𝑁S-dimensional space, with size 2𝑁S . The method for directly solving a corresponding model numerically is
called exact diagonalization (ED) and amounts to calculating the eigenvalues (and -vectors) of a 2𝑁S ×2𝑁S matrix2 [3].
Doing this for 𝑁𝑆 = 14 needs about 2GB of RAM and one minute on a current laptop, but becomes quickly very
expensive. To my knowledge, the biggest spin system solved via ED comprises 50 spins and took 15.5TB of RAM
to solve [4].
Rather than integrating over the whole space, one can average over a random set of its elements. This does not
produce an absolutely exact result, but for a large number 𝑁 of statistically independent samples in a “well-behaved”
problem one can use the central limit theorem to show that the result is exact up to a statistical error proportional to
1/

√
𝑁 [5]. As a result, many problems that would need an exponential amount of processing power can be solved

with polynomial effort instead. This method, known as statistical sampling, is older than the Monte Carlo method,
but due to the tedious work of obtaining the samples it has not had significant scientific impact prior to the existence
of computers.
John von Neumann and Stanislaw Ulam were possibly the first to realize the possibilities arising from combining sta-
tistical sampling with the tireless work of computers. They used the approach to simulate neutron diffusion processes
in fissionable material at Los Alamos National Laboratory in the late 1940s. The secret project needed a code name
and they used Monte Carlo, after the Casino in Monaco, a label that stuck [6].
The initial and ongoing exponential growth of computational power, described by Gordon E. Moore in 1965 [7] that
has since become known as “Moore’s law”, enables new simulations leveraging the Monte Carlo method that push
the boundaries of what has previously been possible.
There exist countless algorithms based on the statistical sampling approach, the method I used throughout my research
is the BSS algorithm [8, 9, 10], which is a specific auxiliary field QMC algorithm. Section 1.1 will give a brief
introduction to the method. More specifically, all QMC results in this thesis are produced with the program package
Algorithms for Lattice Fermions (ALF) [11, 12], which implements the BSS algorithm in a very generic way, making it
easy to implement newmodels. During my doctoral work, I added some significant contributions to ALF, like support
for HDF53, a better separation/encapsulation betweenmodel definitions and the QMC algorithm, and various usability
improvements [13]. The source code for ALF is publicly available at https://git.physik.uni-wuerzburg.de/ALF/ALF.

1 Which is because human locomotion on foot is not extraordinarily energy efficient, compared to other animals, but a human on a bicycle
soars to the top [23]. In that sense, the computer is a tool for the mind, as the bicycle is for locomotion. Unfortunately, most people use much less
efficient modes of transport.

2 One can usually use symmetries to split the matrix into smaller blocks, which helps immensely but does not solve the problem of exponential
scaling.

3 https://www.hdfgroup.org/solutions/hdf5/

1

https://www.hdfgroup.org/solutions/hdf5/
https://git.physik.uni-wuerzburg.de/ALF/ALF

Dissertation Jonas Schwab

My first doctoral research project is discussed in Chapter 2, consisting in a collaboration with Lukas Janssen, Kai Sun,
Zi Yang Meng, Igor F. Herbut, Matthias Vojta, and Fakher F. Assaad whose results are published in [14]. We studied
nematic quantum criticality of Dirac fermions, where the lattice rotation symmetry of the system is spontaneously
broken, such that the Dirac points, which are pinned in the disordered phase, begin to meander at the critical point.
Such transitions are of experimental importance, especially in the realm of 𝑑-wave superconductors [15, 16]. I provide
the first numerical simulations that tackle this problem in form of QMC simulations of two distinct models which
reveal that this kind of transition is continuous. One key aspect of the transition is the lack of Lorentz invariance
encoded in a Fermi velocity anisotropy. Comparison with an 𝜖-expansion conducted by Lukas Janssen reveals that the
flow to the fixed point is extremely slow. Hence numerics as well as experiments will be characterized by a crossover
regime with drifting exponents.
Chapter 3 covers the second research project, consisting in a collaboration with Francesco Parisen Toldin and Fakher
F. Assaad published in [17]. Here, we treat the long-standing problem of the ground state phase diagram of the SU(𝑁)
antiferromagnet of spin 𝑆 on a square lattice [18]. We simulate a fermionic representation of an SU(𝑁)-symmetric
antiferromagnetic spin model on a square lattice. Each site hosts an irreducible representation of SU(𝑁) described
by a square Young tableau of 𝑁/2 rows and 2𝑆 columns. For any 𝑆 and even 𝑁 , our Quantum Monte Carlo (QMC)
simulations are sign problem free, which enables us to generate the first ever exact ground state phase diagram for
this model with 𝑁 ∈ {2, 4, … , 20}, 𝑆 ∈ {1/2, 1, 3/2, 2}. In the large-𝑁 limit, the saddle point approximation
favors a four-fold degenerate valence bond solid (VBS) phase. In the large 𝑆-limit, the semi-classical approximation
points to Néel order. On a line set by 𝑁 = 8𝑆 + 2 in the 𝑆 versus 𝑁 phase diagram, we observe a variety of phases
proximate to the Néel state. At 𝑆 = 1/2 and 3/2 we observe the aforementioned four fold degenerate VBS state. At
𝑆 = 1, a two fold degenerate spin nematic state, in which the C4 lattice symmetry is broken down to C2, emerges.
Finally, at 𝑆 = 2we observe a unique ground state that pertains to a two-dimensional version of the Affleck-Kennedy-
Lieb-Tasaki (AKLT) state [18, 19, 20, 21]. For our specific realization, this symmetry protected topological state
is characterized by an SU(18), 𝑆 = 1/2 boundary state, that has a dimerized ground state. These phases which are
proximate to the Néel state are consistent with the notion of monopole condensation of the antiferromagnetic order
parameter. In particular, one expects spin disordered states with degeneracy set by mod(4, 2𝑆).
While working on these two projects, I optimized my workflows of using ALF. This resulted both in significant
contributions to ALF and a set of Python scripts to streamline in particular the post-processing of data produced by
ALF. These scripts eventually lead to the development of pyALF, a Python package built on top of ALF that is meant
to simplify the different steps of working with ALF. Chapter 4 contains the documentation for pyALF. The source
code for pyALF is publicly available at https://git.physik.uni-wuerzburg.de/ALF/pyALF.

Note

This work is also available as a website found at https://purl.org/diss-jschwab. This might represent a more
convenient read, especially for the pyALF documentation in Chapter 4. The document is built with Jupyter
Book [22], aiming to achieve a more interactive experience.

1.1 A brief (Auxiliary Field Quantum) Monte Carlo primer

In the following section, I provide a brief introduction of the Monte Carlo method. The aim is not to offer an
exhaustive description but rather to convey a fundamental understanding of the method and its underlying concepts.
The majority of the discussion focuses on classical Markov Chain Monte Carlo (MCMC) techniques, illustrated with
easily reproducible examples. The section concludes with a brief exploration of how this approach can be extended
to quantum models, highlighting the key challenges involved.
For more in-depth coverage, I recommend [5] for MCMC in general, [8, 9, 10] for a detailed description of our
specific QMC algorithm and [12] for our actual implementation.
All examples are self-contained, meaning that they can be reproduced with the Python code included in the website
version4 of this document [24]. To run the code, in addition to Python 3, the additional libraries NumPy [25],

4 https://purl.org/diss-jschwab

2 Chapter 1. Introduction

https://git.physik.uni-wuerzburg.de/ALF/pyALF
https://purl.org/diss-jschwab
https://purl.org/diss-jschwab
https://purl.org/diss-jschwab

Dissertation Jonas Schwab

Numba [26] and Matplotlib [27] and SciPy [28] are needed. For generating the shown results, the following software
versions have been used, but most other versions should also work.

Software versions:
Python 3.12.7, NumPy 2.0.2, Numba 0.60.0, Matplotlib 3.9.2, SciPy 1.14.1

1.1.1 Stochastic integration

As previously mentioned, the Monte Carlo method refers to a computer-based stochastic sampling technique. It is
commonly employed to compute the expectation value of a function 𝑓(𝑥)

⟨𝑓⟩ = ∫𝑑𝑥 𝑓(𝑥)𝜌(𝑥).

Usually, 𝑥 spans a high-dimensional space5 and 𝑓(𝑥) corresponds to what we later refer to as an observable. In
general, the probability distribution 𝜌(𝑥) is only accessible through a weight 𝑤(𝑥) ∝ 𝜌(𝑥). In order to obtain the
probability distribution, one needs to normalize the weight:

𝜌(𝑥) = 𝑤(𝑥)
∫𝑑𝑥′ 𝑤(𝑥′) .

Which results in

⟨𝑓⟩ = ∫𝑑𝑥 𝑓(𝑥)𝑤(𝑥)
∫𝑑𝑥 𝑤(𝑥) .

In a naive approach for approximating this integral, one draws 𝑁 values for 𝑥 from a uniform distribution and just
replaces the integral over all possible values of 𝑥 with a sum over this sample:

Naive sampling: ⟨𝑓⟩ ≈
∑𝑥∈Sample 𝑓(𝑥)𝑤(𝑥)

∑𝑥∈Sample 𝑤(𝑥) . (1.1)

In principle this approach works, but in higher dimensions it becomes extremely inefficient and therefore unfeasible:
Most of the values within the sample will be from regions with very small weight. A more practicable approach is
the so-called importance sampling, where the random values are drawn from a non-uniform distribution according to
their weight 𝑤(𝑥). As a result, given the existence of a suitable sample, our equation for estimating the expectation
value simplifies a bit:

Importance sampling: ⟨𝑓⟩ ≈ 1
𝑁 ∑

𝑥∈Sample∝𝑤
𝑓(𝑥). (1.2)

A key component for the success of stochastic integration is the central limit theorem (CLT). It states that the mean of
𝑁 independent values drawn from the same distribution with expectation value𝜇 and variance 𝜎2 converge in the limit
𝑁 → ∞ to a normal (i.e. Gaussian) distribution with expectation value 𝜇 and variance 𝜎2/𝑁 . This guarantees that
statistical sampling will give us the correct answer with a statistical error scaling asymptotically as 1/

√
𝑁 . There is a

caveat that some probability distributions do not have a well-defined expectation value and therefore do not follow the
CLT, for example fat-tailed distributions, which pose a big challenge for a significant subset of QMC simulations [29,
30]. I will show a minimal example with a fat-tailed distribution in Section 1.1.1.2.

5 Reminder: The advantage of stochastic sampling is its superior dimensional scaling (polynomial) compared to a brute-force approach leading
to an exponential scaling in computational effort, as will be demonstrated in Fig. 1.3. Low-dimensional integrals can usually just be solved with a
“brute force” approach.

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 3

Dissertation Jonas Schwab

1.1.1.1 Example: Stochastically calculating a 1d integral

In the following, I will demonstrate stochastic integration on a simple one-dimensional example, by evaluating:

𝜇 = ⟨𝑥2⟩ =
∫5
−5𝑑𝑥 𝑥2 exp (− 𝑥2

2)
∫5
−5𝑑𝑥 exp (− 𝑥2

2)
. (1.3)

Which means we’re evaluating the function 𝑓(𝑥) = 𝑥2 with the weight 𝑤(𝑥) = exp (− 𝑥2
2) in the range 𝑥 ∈ [−5, 5].

Note that the restriction on the range of 𝑥 values is somewhat artificial and an integration over all real numbers would
probably be closer to a realistic scenario, but I chose the restriction to be able to compare importance sampling with
the naive sampling approach and the latter would not have been applicable for integrating over all real numbers. This
restriction is also the reason why 𝑤(𝑥) is not equal to 𝜌(𝑥) and a normalization is necessary.
The plots in Fig. 1.1 are produced with a few lines of Python, embedded below this paragraph in the website version6
of this document. By comparing Fig. 1.1(b) and Fig. 1.1(c), one can see how the importance sampling focuses
mainly on the peak of the normal distribution, while the naive approach samples indiscriminately over the whole
parameter space. After approximately the first ten samples, the two approaches perform similarly well (c.f. Fig.
1.1(d,e)), which is because the parameter space is very small, contrary to common Monte Carlo applications. If we
increase the integration interval from 𝑥 ∈ [−5, 5] to 𝑥 ∈ ℝ, the naive sampling (Eq. (1.1)) would already fail, while
importance sampling (Eq. (1.2)) would perform nearly the same.

Fig. 1.1: Demonstration of naive sampling (Eq. (1.1)) and importance sampling (Eq. (1.2)) through numerical in-
tegration of Eq. (1.3). a: Probability density 𝑤(𝑥) = exp (−𝑥2/2). b: Function 𝑓(𝑥) = 𝑥2 whose expectation
value is to be calculated, with 𝑥 ∈ [−5, 5]. The vertical lines demonstrate the importance sampling approach. c:
Intergrand 𝑤(𝑥)𝑓(𝑥). The vertical lines demonstrate the naive sampling approach. d: Cumulative integration results
over samples of size 𝑁 . e: Deviation of the integration results from the exact result. The deviation scales as 1/

√
𝑁 ,

as predicted by the CLT.

To look at the effect of increasing the parameter space, we generalize Eq. (1.3) to more dimensions, resulting in:

𝜇 =
∫5
−5𝑑𝑥1 … ∫5

−5𝑑𝑥𝑁dim
𝒙2 exp (− 𝒙2

2)
∫5
−5𝑑𝑥1 … ∫5

−5𝑑𝑥𝑁dim
exp (− 𝒙2

2)
. (1.4)

Simulating for 𝑁dim ∈ {1, 2, 3, 4} results in Fig. 1.2, which shows the decreasing performance of uniform sampling
compared to importance sampling. To better compare the performance between these approaches, it is helpful to

6 https://purl.org/diss-jschwab

4 Chapter 1. Introduction

https://purl.org/diss-jschwab

Dissertation Jonas Schwab

compare the computing time necessary to achieve a certain precision. In order to obtain these times, we fit the
deviation from the exact result to 𝑎/

√
𝑁 , where 𝑁 is the number of random numbers and 𝑎 a fitting parameter.7

From this, we can estimate the computing time 𝑡𝜎 needed to achieve a precision of e.g. 𝜎 = 10−2 as

𝑡𝜎 = 𝑡1 (𝑎
𝜎)

2
, (1.5)

where 𝑡1 is the time needed for a single sample.
In Fig. 1.3 these estimates and the actual computing time to generate the results of Fig. 1.2 are plotted. For both
uniform sampling and exactly calculating8the integral Eq. (1.4) the time 𝑡 scales exponentially with 𝑁dim. Therefore,
importance sampling is needed to beat the exponential scaling of a direct integral and achieve polynomial scaling.

Fig. 1.2: Comparison of uniform and importance sampling through numerical evaluation of Eq. (1.4) for diffrent
number of dimensions 𝑁dim. With increasing parameter space, one observes decreasing performance of the uniform
sampling compared to importance sampling.

7 Instead of fitting to 𝑎/
√

𝑁 one could also estimate the standard error through the spread of values, which is usually the approach since the
exact value is not known.

8 The reference values have been created through exact numeric integration using scipy.integrate.quad()11.
11 https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 5

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad

Dissertation Jonas Schwab

Fig. 1.3: Computing time needed for evaluating Eq. (1.4) with different approaches (exact integration, importance
sampling, uniform sampling) to produce Fig. 1.2. The dashed (dotted) line estimates the time needed to achieve
a precision of 10−2 with uniform (importance) sampling (cf. Eq. (1.5)). Both non-stochastic (= exact) numerical
integration and uniform sampling scale exponentially in computational effort when desiring a set precision, therefore
only with importance sampling a polynomial scaling is achievable.

6 Chapter 1. Introduction

Dissertation Jonas Schwab

1.1.1.2 Example: Fat tails

Here, I will give a very simple demonstration of the fat tail problem by trying to stochastically estimate the mean of
a Lorentz distribution.
The Lorentz distribution

𝑃(𝑥) = 1
𝜋(1 + 𝑥2)

is symmetric around 𝑥 = 0, therefore its median is zero. So one might expect the mean to be also zero. But actually
the integral

⟨𝑥⟩ = ∫
∞

−∞
𝑑𝑥 𝑥𝑃(𝑥)

does not converge, because 𝑃(𝑥) falls off so slowly. It has a long or fat tail, see the comparison to a Gauss distribution
in Fig. 1.4(a). Therefore, the Lorentz distribution does not have a mean and the CLT can not be applied.
In Fig. 1.4(b,c), we can see the attempt to calculate the mean of this distribution through stochastic sampling. An
endeavor that seems to be successful if we focus on some parts of the sequence, but occasionally the long tails will
create a big outlier, also called a spike, that throws off the result. If you find such spikes in your Monte Carlo time
sequence, it means you have fat tails and the CLT is not applicable any more9.

Fig. 1.4: Demonstration of fat-tailed distributions: Trying to estimate the mean of a Lorentz distribution through
stochastic sampling fails. a: Comparison of Lorentz distribution to Gauss distribution: The Lorentz distribution
decays extremely slowly (i.e. with a power law). b: 20 × 103 random numbers drawn from a Lorentz distribution.
One can see a few of the characteristic outliers, also called “spikes”, indicating a fat-tailed distribution. c: Cumulative
mean of the random numbers. Periodically, it seems to converge to the median 𝑥0 = 0, until a spike throws the value
off.

9 Reminder: The CLT is a fundamental cornerstone of Monte Carlo methods.

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 7

Dissertation Jonas Schwab

1.1.2 Markov chain Monte Carlo

The previous examples used normal distributions as probability weights, which can easily be sampled directly. But
our actual problems are too complicated to directly generate samples according to their probability weights. Instead,
we only have access to the weight of one specific given configuration. The established stochastic sampling approach
for solving this problem is called Markov chain Monte Carlo (MCMC). A Markov chain describes a sequence of
configurations (𝐶1, 𝐶2, 𝐶3, …), where (starting from an initial configuration𝐶1) a new configuration𝐶𝑖+1 is derived
from its previous configuration𝐶𝑖 plus a random component. 𝐶𝑖+1 does not explicitly depend on configurations earlier
than 𝐶𝑖. The propagation to the next configuration of the chain —from now on referred to as an update— is designed
such that the configurations on the chain correspond to the desired importance samples. Notably, propagation along
the chain does (usually) not correspond to any physical time (except for CPU time during the simulation).
Analogous to Eq. (1.2), an expectation value ⟨𝑓⟩ ≡ ∑𝐶 𝑓(𝐶)𝑃(𝐶) can then be approximated as

⟨𝑓⟩ ≈ 1
𝑁

𝑁
∑
𝑖=1

𝑓(𝐶𝑖),

with some caveats that I will address in a few paragraphs.
For a successful MCMC simulation, the updating rules have to fulfill two criteria: Stationarity with regards to the
probability distribution and ergodicity.
Stationarity means that, statistically, an update maps the desired probability distribution 𝑃(𝐶) onto the same dis-
tribution, which means that all “probability flows” from and to any given configuration balance out:

𝑃(𝐶) = ∑
𝐶′

𝑃(𝐶|𝐶′)𝑃 (𝐶′) ∀𝐶,

where 𝑃(𝐶′|𝐶) is the probability that the next configuration is 𝐶′ if the current configuration is 𝐶. The extension
to non-normalized weights 𝑊 is straightforward:

𝑊(𝐶) = ∑
𝐶′

𝑃(𝐶|𝐶′)𝑊(𝐶′) ∀𝐶.

ManyMCMC algorithms implement a stronger criterion called detailed balance, where the “probability flow” between
two configurations is symmetric:

𝑃(𝐶′|𝐶)𝑃 (𝐶) = 𝑃(𝐶|𝐶′)𝑃 (𝐶′) ∀𝐶, 𝐶′,

and with non-normalized weights

𝑃(𝐶′|𝐶)𝑊(𝐶) = 𝑃(𝐶|𝐶′)𝑊(𝐶′) ∀𝐶, 𝐶′.

Fig. 1.5 demonstrates both detailed balance and a weaker version of stationarity through an example with three states
𝐴, 𝐵 and 𝐶 with statistical weights of 𝑤(𝐴) = 1, 𝑤(𝐵) = 2 and 𝑤(𝐶) = 3, corresponding to probabilities of
𝑃(𝐴) = 1/6, 𝑃 (𝐵) = 1/3 and 𝑃(𝐶) = 1/2, respectively. The probabilities are achieved by normalizing the
weights: 𝑃(𝑋) = 𝑊(𝑋)/ ∑𝑖 𝑊(𝑖).
Ergodicity means that the updates are actually able to reach the stationary distribution. This is equivalent to saying
that all relevant parts of the configuration space are covered by the simulation, or that any configuration𝐶 is reachable
from any other configuration𝐶′ within a finite number of updates. Note that simulations who are in principle ergodic
can be non-ergodic in practice, if the simulation moves through the whole configuration space, but too slowly for any
practical computing times. Ergodicity issues are one of the major challenges in many Monte Carlo simulations, for
example in low-temperature simulations of spin glasses, where algorithms tend to get stuck in local minima of the
energy (= local maxima of the Monte Carlo weight).

8 Chapter 1. Introduction

Dissertation Jonas Schwab

Fig. 1.5: Simple example of Markov chain processes with and without detailed balance. Both Markov processes have
possible states 𝐴, 𝐵 and 𝐶 with statistical weights of 1, 2 and 3, corresponding to probabilities of 1/6, 1/3 and 1/2,
respectively.

1.1.2.1 Caveats: Autocorrelation and Warmup

Contrary to the direct sampling approach as shown in Section 1.1.1.1, the configurations created by MCMC are not
independent, but 𝐶𝑖 is usually strongly correlated to 𝐶𝑖+1, a bit weaker to 𝐶𝑖+2 and so on. Therefore, the CLT does
not hold and a naive estimation of the errors will grossly underestimate them. This correlation between different
configurations on the Markov chain can be quantified by the autocorrelation 𝛾𝜏 of an observable 𝑂

𝛾𝜏(𝑂) = ∑𝑖 ⟨(𝑂𝑖 − 𝜇)(𝑂𝑖+𝜏 − 𝜇)⟩
∑𝑖 1

and the normalized autocorrelation

̄𝛾𝜏(𝑂) = 𝛾𝜏(𝑂)
𝛾0(𝑂) . (1.6)

Usually, the autocorrelation declines asymptotically exponentially with 𝜏 :

̄𝛾𝜏(𝑂) ∼ exp(− 𝜏
𝜏𝛾(𝑂)) , (1.7)

where we call 𝜏𝛾(𝑂) the autocorrelation time of observable 𝑂.
One established method of dealing with autocorrelation is to combine multiple measurements from adjacent Markov
chain configurations in what we refer to as a bin.

�̄�𝑖 = 1
𝑀bin

𝑖𝑀bin

∑
𝑛=(𝑖−1)𝑀bin

𝑂𝑛

Here, we combine 𝑀bin measurements into one bin. If 𝑀bin is large enough (order of 𝜏𝛾(𝑂)), the bins are virtually
uncorrelated and we can use the central limit theorem again.
Similarly to autocorrelation, there is often also what we refer to as “warmup” period, sometimes also called “burn-in”
or “equilibration”. It refers to a period at the beginning of a simulation whose measurements should be dismissed to
achieve the correct results. This stems from the fact that finding good initial configurations for a Markov chain is hard
and most initial configurations are very untypical, meaning they are far from the region of the configuration space
making up the bulk of the configurations traversed during the simulation.
I will show in an example in Section 1.1.2.3 how to control for autocorrelation and warmup.

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 9

Dissertation Jonas Schwab

Note

Both autocorrelation and warmup times are observable dependent, meaning that different observables like mag-
netisation and energy of the same simulation have generally different autocorrelation and warmup times.

1.1.2.2 Metropolis-Hastings algorithm

Finally, we need an algorithm that implements MCMC. A very common one is theMetropolis algorithm [31], devel-
oped in 1953 by Metropolis et al. and generalized to the Metropolis-Hastings algorithm [32] by Hastings in 1970.
The algorithm stands out for its simplicity:
After the creation of an initial state 𝐶1, a step that all MCMC simulations have in common, the algorithm comprises
of a loop, where each iteration consist of these four steps:

Algorithm 1.1.1 (Metropolis-Hastings)

1. Propose update: The system is currently in state 𝐶 = 𝐶𝑖 and a potential new state 𝐶′ is proposed. How
𝐶′ is generated exactly is beyond the scope of this algorithm and can often be the most challenging aspect
of designing a Monte Carlo simulation, since an update should ideally move quickly and efficiently through
the phase space to reduce autocorrelation times and ensure ergodicity. This includes that updates should
have acceptance probabilities large enough to be effective.

2. Calculate the acceptance probability:

𝐴(𝐶′|𝐶) = min(1, 𝑊(𝐶′)𝑔(𝐶|𝐶′)
𝑊(𝐶)𝑔(𝐶′|𝐶)) , (1.8)

where 𝑊(𝐶) is the probability weight of the configuration 𝐶 and 𝑔(𝐶|𝐶′) [𝑔(𝐶′|𝐶)] is the probability
that an update to 𝐶 [𝐶′] is proposed, if in step 1 the system is in state 𝐶′ [𝐶].10

3. Accept / reject update: Generate random number 𝑝 ∈ [0, 1[. If 𝐴(𝐶′|𝐶) > 𝑝, then accept the update:
𝐶𝑖+1 = 𝐶′. Else, reject the update: 𝐶𝑖+1 = 𝐶.

4. Go back to 1.

1.1.2.3 Example: One-dimensional Ising chain

As a simple demonstration of the Metropolis algorithm, I am going to simulate the one-dimensional Ising chain with
periodic boundary conditions. It consists of 𝐿 classical spins with a ferromagnetic nearest-neighbor interaction 𝐽 :

𝐻(𝐶) = −𝐽
𝐿

∑
𝑖=1

𝑠𝑖𝑠𝑖+1 𝑠𝐿+1 = 𝑠1 𝐶 = (𝑠1, 𝑠2, … , 𝑠𝐿) 𝑠𝑖 ∈ {−1, 1}. (1.9)

Where 𝐶 is one of the 2𝐿 possible configurations. This model can be quickly solved analytically. We calculate the
thermodynamic partition function

𝑍 = ∑
𝐶

𝑒−𝛽𝐻(𝐶) =
𝑁

∏
𝑖=1

⎛⎜
⎝

∑
𝑠𝑖𝑠𝑖+1∈{−1,1}

exp(𝛽𝐽𝑠𝑖𝑠𝑖+1)⎞⎟
⎠

= (2 cosh(𝛽𝐽))𝐿

and the energy

𝐸 = ⟨𝐻⟩ = 1
𝑍 ∑

𝐶
𝐻(𝐶)𝑒−𝛽𝐻(𝐶) = − 𝜕

𝜕𝛽 ln(𝑍) = −𝐽𝐿 tanh(𝛽𝐽),

which we will use as a reference to check the accuracy of the simulation.
10 In the pre-Hastings Metropolis algorithm, 𝑔(𝐶|𝐶′) = 𝑔(𝐶′|𝐶).

10 Chapter 1. Introduction

Dissertation Jonas Schwab

Instead of calculating the sum over 𝐶 analytically, one can approximate it through importance sampling,

𝐸 = ∑𝐶 𝐻(𝐶)𝑒−𝛽𝐻(𝐶)

∑𝐶 𝑒−𝛽𝐻(𝐶)

𝐸 ≈ 1
𝑁 ∑

𝐶∝𝑊(𝐶)
𝐻(𝐶) 𝑊(𝐶) = 𝑒−𝛽𝐻(𝐶), (1.10)

where 𝐶 ∝ 𝑊(𝐶) means that 𝐶 is sampled according to the weight 𝑊(𝐶) and 𝑁 is the number of samples.
To evaluate Eq. (1.10) with the Metropolis-Hastings algorithm, it is now necessary to generate an initial configuration
𝐶1 and define an algorithm for proposing updates. 𝐶1 will be generated randomly by setting each spin individually
to either -1 or 1 with equal probability. The proposal of an update is done by choosing a random spin and flipping it.
In the website version11 of this document, you can view the source code defining a function run_1d_ising_wrap,
which simulates the Ising chain. We measure the energy 𝐸, magnetization 𝑚 = ⟨∑𝑖 𝑠𝑖⟩ and its second and fourth
moment 𝑚2 = ⟨(∑𝑖 𝑠𝑖)2⟩ and 𝑚4 = ⟨(∑𝑖 𝑠𝑖)4⟩ after every update. Measurements from 𝐿 updates are averaged
into one bin.
Here, we simulate with 𝐿 = 200 spins, 𝐽 = 1.0 and 𝛽 = 2.0. We simulate for 50 × 103 bins, resulting in a total of
𝐿𝑁bins = 10 × 106 updates.

L = 200 # Number of Ising spins
J = 1.0 # Ferromagnetic interaction strength
beta = 2.0 # Reciprocal temperature
N_bins = 50000 # Number of Monte Carlo bins

energy_exact = energy_1d_ising(J, beta, L)
observables, final_state = run_1d_ising_wrap(L, J, beta, N_bins)

We first look at the time series of the measured bins in Fig. 1.6. The definition of the used function plot_bins is
again viewable in the website version. This time series already gives a good first overview of the simulation. We can
see what might be a good number of bins to skip for the warmup periods and also get an idea about autocorrelation
times. The energy shows a drift for about the first 300 bins, after which it seems to oscillate around the mean. This
means dismissing the first 300 bins is the correct approach for accurately estimating the energy. On the other hand,
the magnetization 𝑚 seems to be “warmed up” right from the beginning, but it oscillates on a time scale of several
thousand bins, suggesting a similarly big autocorrelation time.
To more accurately estimate autocorrelation times, we can now calculate the autocorrelation by dismissing the non-
equilibrated bins and applying Eq. (1.6) on the rest. The result is then fitted to an exponential decay, using Eq. (1.7)
to estimate the autocorrelation time 𝜏auto.
Furthermore or alternatively, one can calculate the standard error 𝜎, assuming 𝑁 independent measurements 𝑥𝑖 for
different rebinning values 𝑁rebin:

𝜎2 = ∑𝑁
𝑖=1(�̄�𝑖 − 𝜇)2

𝑁(𝑁 − 1) ; 𝜇 = ∑𝑁
𝑖=1 �̄�𝑖
𝑁 ; �̄�𝑖 = 1

𝑁rebin

𝑖𝑁rebin

∑
𝑛=(𝑖−1)𝑁rebin

𝑂𝑛.

If 𝑁rebin is too small, the error will be underestimated and increasing 𝑁rebin will increase the error estimate, until it
saturates signaling the correct value for 𝑁rebin.
Both approaches are shown in Fig. 1.7. One can see greatly differing autocorrelation times 𝜏auto between the four
observables. While the energy has the smallest 𝜏auto of less than 100 bins, the magnetization 𝑚 has that more than ten
times. The second and fourth moment of the magnetization lay in between those two extremes with approximately
350 and 270, respectively.
Notably, the strong autocorrelation of 𝑚 is in a sense an artifact of how the updates are designed. Since inversion of
all Ising spins (𝑠𝑖 → −𝑠𝑖∀𝑖) is a symmetry of the model, follows 𝑚 = 0. On the Monte Carlo side, this is expressed
by the fact that the update 𝑠𝑖 → −𝑠𝑖∀𝑖 would always be accepted. Therefore, we could simply set 𝑚 = 0, which
would be called an improved estimator.

11 https://purl.org/diss-jschwab

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 11

https://purl.org/diss-jschwab

Dissertation Jonas Schwab

Fig. 1.6: Time series of bins measured while simulating the one-dimensional Ising chain. Left: Zoomed in to the first
1000 bins. Right: all 50 × 103 bins.

Now that we are aware of the warmup and autocorrelation times, we can determine the final results of the simulation.
Out of convenience, we use for all observables the same parameters, skipping the first 1000 bins and rebinning 2000
original bins into one. The results are shown below. The exact values 𝐸 ≈ −192.805516015 and 𝑚 = 0 are
reproduced within margin of errors.

𝐸 = −192.9 ± 0.2
𝑚 = −0.08 ± 0.08

𝑚2 = 0.28 ± 0.03
𝑚4 = 0.17 ± 0.02

1.1.2.4 Example in two dimensions: Critical slowing down

After finishing our first proper Monte Carlo simulation, I want to show a phenomenon called critical slowing down.
For this, we go from one to two dimensions: Simulating the two-dimensional Ising model on a square lattice allows us
to investigate a continuous phase transition. The model was analytically solved in 1944 by Onsager [33], therefore we
know it has a paramagnetic-ferromagnetic phase transition at reciprocal temperature 𝛽𝑐 = ln(1+

√
2)

2𝐽 ≈ 0.44069/𝐽 .
Meaning that a high temperature above the critical point 𝛽 < 𝛽𝑐, the system is disordered and forms a paramagnet.
However, when lowering the temperature 𝛽 > 𝛽𝑐 the system orders and becomes ferromagnetic.
Simulating at 𝐽 = 1 for system sizes 12 × 12 and 24 × 24 in the range 𝛽 ∈ [0.35, 0.5], we find the autocorrelation
times and acceptance ratios displayed in Fig. 1.8. Once again, the code for producing this results is found below this
paragraph on the website version12.
We use the same single spin flip updates as in the previous example. We find that the autocorrelation times increase
dramatically around the critical point 𝛽𝑐. This effect is related to the nature of critical points: At a critical point,
the system exhibits fluctuations at all energy and length scales, which is very hard to capture efficiently through
Monte Carlo updates. In this case, the single spin flip updates struggle with long-ranged modes, increasing the

12 https://purl.org/diss-jschwab

12 Chapter 1. Introduction

https://purl.org/diss-jschwab

Dissertation Jonas Schwab

Fig. 1.7: Autocorrelation and error estimates for a simulation of the one-dimensional Ising chain. Left: Normalized
autocorrelation vs distance between bins, with fits to an exponential decay for estimating the autocorrelation times
𝜏auto. Right: Error estimate, assuming independent bins, vs rebinning value 𝑁rebin. It saturates approximately at
𝑁rebin = 𝜏auto.

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 13

Dissertation Jonas Schwab

autocorrelation times. Furthermore, the acceptance ratio (i.e. the probability that a proposed update gets accepted)
diminishes continuously with increasing 𝛽, additionally impacting autocorrelation times.
Despite the long autocorrelation times, the simulations produce accurate results. We can use the Binder ratio 𝐵 [34]

𝐵 = (1 − 𝑚4
(𝑚2)2) /2

to detect the critical point. 𝐵 is a renormalization group (RG) invariant quantity, which means it is either 0 or 1 in the
thermodynamic limit, depending on whether the system is in an unordered or ordered phase. 𝐵, plotted as a function
of the control parameter (in this case 𝛽), is expected to intersect at the critical point for different system sizes. Exactly
this behavior is shown in Fig. 1.9, reproducing Onsager’s value for 𝛽𝑐 within the margin of error. Still, due to critical
slowing down, the precision of the numerical results is not very high, a limitation, we are going to address in the next
step by using Wolff cluster updates.

Fig. 1.8: Autocorrelation times and acceptance ratio for 2d Ising model for two lattice sizes, simulated using single
spin flip updates. The autocorrelation times increase dramatically around the critical point 𝛽𝑐, a phenomenon that is
called critical slowing down. The acceptance ratio is high in the disordered phase at high temperature and decreases
when approaching the ordered phase by decreasing the temperature.

14 Chapter 1. Introduction

Dissertation Jonas Schwab

Fig. 1.9: Binder ratio for 2d Ising model at 𝐽 = 1. The crossing around 𝛽 ≈ 0.44 signals a phase transition, a result
which is in accordance with the exact result by Onsager from 1944 [33].

1.1.2.4.1 Solving critical slowing down with the Wolff algorithm

A strategy for addressing critical slowing down, or ergodicity challenges in general, is to go from atomistic (e.g. single
spin flip) updates to bigger correlated updates, which for example flip an entire cluster of spins. Updates like these
are generally very hard to design: Most states in the phase space have high energy, therefore a random configuration
change 𝐶 → 𝐶′ is very likely to increase the energy, moving the system away from the higher-weighted low-energy
states. The positive energy mismatch 𝐸(𝐶′) − 𝐸(𝐶) reduces the weight —and therefore the acceptance probability
of that state— exponentially (cf. Eq. (1.8)). Or in other words: Proposing an update that moves the configuration
fast through the configuration space, will most likely result in a very low acceptance probability, except if significant
knowledge about the model was used to design the update.
An example of a well-designed algorithm generating such updates is the Wolff algorithm [35]. It is specifically
designed for simulating the Isingmodel, by building clusters of spins that get flipped collectively. Notably, each cluster
is built in such a way that 𝑊(𝐶′)𝑔(𝐶|𝐶′)

𝑊(𝐶)𝑔(𝐶′|𝐶) = 1 (cf. Eq. (1.8)), hence flipping a cluster is accepted with probability 1.

Algorithm 1.1.2 (Wolff cluster)

1. Choose initial spin: Randomly chose one spin as the seed for the cluster.
2. Try to add neighboring spins: For all neighboring spins that are not already part of the cluster and

have the same orientation as the spins in the cluster: Try to add this spin to the cluster with probability
1 − exp(−2𝛽𝐽).

3. If a spin gets added, perform step 2 for that spin.
4. Flip cluster.

Simulating the two-dimensional Ising model with the help of Algorithm 1.1.2 leads to autocorrelation times and
average cluster sizes as displayed in Fig. 1.10. The algorithm solves critical slowing down by scaling the average
cluster size with the correlation length in the system. With this approach, we manage to create more precise data in
less time.13 The result is displayed in Fig. 1.11.

13 In this concrete example, the simulations for Fig. 1.9 took my computer about 64 seconds to complete, while the simulations for Fig. 1.11
took about 21 seconds, even though the former only computed system sizes 12 × 12 and 24 × 24, while the latter went up to sizes of 36 × 36.

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 15

Dissertation Jonas Schwab

Fig. 1.10: Autocorrelation times and average cluster size for 2d Ising model for three lattice sizes, simulated with
Wolff cluster updates. The Wolff algorithm (Algorithm 1.1.2) solves critical slowing down. The cluster size grows
dynamically when going from the disordered to the ordered phase, mirroring the correlation length in the system.

16 Chapter 1. Introduction

Dissertation Jonas Schwab

Fig. 1.11: Binder ratio for 2d Ising model at 𝐽 = 1 for three lattice sizes, simulated with Wolff cluster updates. The
crossing around 𝛽 ≈ 0.44 signals a phase transition, a result which is in accordance with the exact result by Onsager
from 1944 [33].

1.1.3 Making a classical computer understand quantum models

Now that we know how to simulate classical models, the next challenge will be to apply the same approach to quantum
models. In this context, the significant difference between classical and quantum models is that for classical models
the energy of the system is a function of the configuration, while in a quantum model, the energy is determined
through an operator. Meaning that for a classical model, each system configuration has a well-defined energy and
statistical weight, while for a quantum model this is not the case.
As far as I am aware, there are generally two strategies for solving this problem, which both essentially start at the
partition function 𝑍 = Tr(exp(−𝛽�̂�)). Both express the partition function as a high-dimensional integral over
a classical weight 𝑤(𝐶), that can be calculated through classical MCMC. This does not absolve the system from
quantum-mechanical quirks (e.g. the famous sign problem can occur), but it makes the problem amenable to a
classical computer.
The first strategy is based on a path integral formulation, while the other one uses the series expansion of the expo-
nential function. The latter approach can be extremely efficient, if the operators are idempotent w.r.t. some power
of the operator, as is e.g. the case for spin systems. The former approach, on the other hand, is more flexible and the
one that ALF employs, which is why I will be focusing on it.
At its core, the path integral (also known as world line) approach maps the 𝑑 dimensional quantum model to a 𝑑 + 1
dimensional (quasi) classical model, on which classical MCMC can be applied. The additional dimension is referred
to as imaginary time, since translation along this axis is, up to a Wick rotation, like a time evolution in e.g. the
Schödinger equation.
To demonstrate the concept on a relatively simple model, I am taking the already familiar Ising model and extend it
to a quantum model by adding a field ℎ perpendicular to the Ising spin orientation

�̂� = − 𝐽 ∑
⟨𝑖,𝑗⟩

̂𝑠𝑧
𝑖 ̂𝑠𝑧

𝑗
⏟⏟⏟⏟⏟

�̂�0

− ℎ ∑
𝑖

̂𝑠𝑥
𝑖

⏟⏟⏟⏟⏟
�̂�ℎ

.

Here, the operators ̂𝑠𝑧 and ̂𝑠𝑥 correspond to the Pauli matrices 𝑠𝑧 = (1 0
0 −1) , 𝑠𝑥 = (0 1

1 0) , in the basis

|↑⟩ = (1
0) , |↓⟩ = (0

1).

This is (one of) the simplest interacting quantum models, known as the transverse field Ising model or the quantum
Ising model. The transverse field introduces a tunneling between up and down spins and therefore disorder.

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 17

Dissertation Jonas Schwab

Since we are interested in thermodynamic quantities, we want to calculate the partition function

𝑍 = Tr (𝑒−𝛽�̂�) .

The first step of representing the partition function in terms of a classical model, is to rewrite the imaginary time
evolution of length 𝛽 into 𝑁𝜏 steps of length Δ𝜏 = 𝛽/𝑁𝜏 . By introducing 𝑁𝜏 − 1 identities 𝟙 = ∑Φ |Φ⟩ ⟨Φ|, the
configuration space gets enhanced Φ → 𝐶 = (Φ1, … , Φ𝑁𝜏

), to 𝑑 + 1 dimensions. We call the additional dimension
imaginary time.

𝑍 = Tr(exp (−Δ𝜏�̂�)𝑁𝜏)

= ∑
Φ

⟨Φ| exp (−Δ𝜏�̂�) |Φ⟩ |𝜙⟩ ≡ ⨂
𝑖

|𝑠𝑧
𝑖 ⟩

= ∑
𝐶

𝑁𝜏

∏
𝑛=1

⟨Φ𝑛| exp (−Δ𝜏�̂�) |Φ𝑛+1⟩ Φ𝑁𝜏+1 = Φ1

The next step is a Trotter decomposition to separate the classical Ising part �̂�0 from the transverse field �̂�ℎ, thereby
introducing a systematic error 𝒪(Δ𝜏

2) [36].

exp (−Δ𝜏(�̂�0 + �̂�ℎ)) = exp (−Δ𝜏�̂�0) exp (−Δ𝜏�̂�ℎ) + 𝒪(Δ𝜏
2)

𝑍 = ∑
𝐶

𝑁𝜏

∏
𝑛=1

⟨Φ𝑛| exp (−Δ𝜏�̂�0) exp (−Δ𝜏�̂�ℎ) |Φ𝑛+1⟩ + 𝒪(Δ𝜏
2) (1.11)

We now apply the classical Hamiltonian to the bra on the left, turning the operator back into a function:

𝑍 = ∑
𝐶

𝑁𝜏

∏
𝑛=1

exp (−Δ𝜏𝐻0(Φ𝑛)) ⟨Φ𝑛| exp (−Δ𝜏�̂�ℎ) |Φ𝑛+1⟩ + 𝒪(Δ𝜏
2).

The transverse field part factorizes into on-site terms whose matrix elements can be mapped to the exponential of an
Ising interaction:

⟨Φ𝑛| exp (−Δ𝜏�̂�ℎ) |Φ𝑛+1⟩ = ∏
𝑖

⟨𝑠𝑧
𝑖,𝑛| exp (Δ𝜏ℎ ̂𝑠𝑥

𝑖) |𝑠𝑧
𝑖,𝑛+1⟩ (1.12)

⟨𝑠𝑧
𝑖 | exp (Δ𝜏ℎ ̂𝑠𝑥) |𝑠𝑧

𝑗⟩ = 𝛼 exp(𝛾𝑠𝑧
𝑖 𝑠𝑧

𝑗) 𝛼 = √sinh(ℎΔ𝜏) cosh(ℎΔ𝜏)
𝛾 = − 1

2 ln(tanhℎΔ𝜏)
Inserting this result back into the partition function, we can identify it as an anisotropic classical Ising model [up
to a systematic error 𝒪(Δ𝜏

2)] in 𝑑 + 1 dimensions with interaction strength Δ𝜏𝐽/𝛽 in the original dimension and
− 1

2𝛽 ln(tanhℎΔ𝜏) in the new dimension.

𝑍 = 𝛼𝑁𝑁𝜏 ∑
𝐶

𝑁𝜏

∏
𝑛=1

[exp (−Δ𝜏𝐻0(Φ𝑛)) exp(𝛾 ∑
𝑖

𝑠𝑧
𝑖,𝑛𝑠𝑧

𝑖,𝑛+1)] + 𝒪(Δ𝜏
2)

= 𝛼𝑁𝑁𝜏 ∑
𝐶

exp(−𝛽′𝐻′(𝐶)) + 𝒪(Δ𝜏
2) where 𝛽′𝐻′ = − ∑

⟨𝑥,𝑥′⟩
𝐽𝑥,𝑥′𝑠𝑧

𝑥𝑠𝑧
𝑥′

𝐽𝑥,𝑥′ = { Δ𝜏𝐽 If 𝑥 and 𝑥′ are neighbors in space
− 1

2 ln(tanhℎΔ𝜏) If 𝑥 and 𝑥′ are neighbors in 𝜏
Omitting the systematic error from the Trotter decomposition, the model can now be simulated with classical MCMC,
by sampling configurations 𝐶 according to the weight 𝑤(𝐶) = exp(−𝛽′𝐻′(𝐶)). This is a relatively simple example
on how to simulate quantum models, but the general approach of enhancing the configuration space to get a statistical
weight that is a function of the configuration is common to all QMC methods. Most methods include a Trotterisation
that introduces a —usually well-controllable— systematic error. Note: There are also so-called continuous time
methods that do not generate such a systematic error.

18 Chapter 1. Introduction

Dissertation Jonas Schwab

1.1.4 Negative sign problem

Most of the times, the resulting weight 𝑤(𝐶) from the step above can not be identified with a physical classical
Hamiltonian 𝐻′(𝐶), but only some abstract action. More severely, in many models 𝑤(𝐶) can become non-positive,
which results in the (in)famous sign problem.
The sign problem produces two problems: Firstly, we cannot interpret 𝑤 as a probability weight any more, which
prevents the direct use of importance sampling. This problem can be solved with reweighting, as I will show in a
moment. More heavily weighs the second problem: As we will see after introducing reweighting, the sign problem
leads to an exponential scaling of the computational effort with system size.
To recap, we want to use importance sampling to calculate something like

⟨𝑂⟩𝑤 = ∑𝐶 𝑂(𝐶)𝑤(𝐶)
∑𝐶 𝑤(𝐶) . (1.13)

But if 𝑤(𝐶) can become negative or complex, a direct application is not possible. To solve this problem, one can
absorb the sign of the weight in a function 𝜎(𝐶), resulting in a modified weight �̃�(𝐶) = 𝑤(𝐶)

𝜎(𝐶) . This is a process
known as reweighting. Usually, the reweighting chosen such that �̃�(𝐶) = |𝑤(𝐶)| and therefore 𝜎(𝐶) = 𝑤(𝐶)

|𝑤(𝐶)| , but
principally any other choice resulting in �̃�(𝐶) > 0 works also.
With this, we can rewrite the expectation value Eq. (1.13) as an integration with respect to the new weight �̃�:

⟨𝑂⟩𝑤 = ∑𝐶 𝑂(𝐶)𝜎(𝐶)�̃�(𝐶)
∑𝐶 𝜎(𝐶)�̃�(𝐶) = ⟨𝜎𝑂⟩�̃�

⟨𝜎⟩�̃�
(1.14)

The average sign ⟨𝜎⟩�̃� measures the severity of the sign problem: The smaller it is, the larger are the fluctuations of
Eq. (1.14), decreasing the precision of results. In the common choice |�̃�(𝐶)| = 1, the absolute value of the average
sign ranges from zero to one, where one is a sign problem free simulation and zero is not feasible.
The average sign can be understood as the ratio of two partition functions

⟨𝜎⟩�̃� = ∑𝐶 𝑤(𝐶)
∑𝐶 �̃�(𝐶) = 𝑍

̃𝑍
.

Since a partition function scales asymptotically as an exponential of the 𝑑 + 1 dimensional volume of the simulated
model, the same is also true for the average sign. Meaning ⟨𝜎⟩�̃� ∼ exp(−𝑓𝛽𝑉), where 𝑓 has the unit of an energy
density, 𝑉 is the 𝑑 dimensional volume and 𝛽 the reciprocal temperature and thereby the size of the additional
dimension. Therefore, to keep the same precision, the computational effort scales exponentially with the system size
in the presence of a sign problem. But all is not lost! The sign problem is basis dependent, i.e. in some simulations
with a sign problem another representation might exist that solves the sign problem. Furthermore, the sign problem
can be more and less severe so that systems with a relatively big sign, larger systems sizes could be simulated with
reasonable effort.

1.1.5 Auxiliary field QMC

In the last part of this section, I will take a cursory glance at simulating fermions with a class of methods called
auxiliary field quantum Monte Carlo.
The idea in auxiliary field QMC is to express the interacting model as free fermions interacting with a bosonic field.
This way, one can integrate out the fermions analytically and the bosonic field can be sampled with Monte Carlo.
Most commonly, the auxiliary field is generated through a Hubbard-Stratonovich transformation, but it can also be
designed directly into the model, as is done for example through the Yukawa coupling in Chapter 2.
A Hubbard-Stratonovich transformation is essentially just a Gauss integral, but backwards:

exp (̂𝐴2) = 1√
4𝜋

∫
∞

−∞
𝑑𝑥 exp(−𝑥2

4 − 𝑥 ̂𝐴) ,

1.1. A brief (Auxiliary Field Quantum) Monte Carlo primer 19

Dissertation Jonas Schwab

where ̂𝐴2 might for example be a Hubbard interaction ̂𝐴2 = [∑𝜎=↑,↓(̂𝑐†
𝜎 ̂𝑐𝜎 − 1/2)]

2
.14

The transformation works with the exponential of an operator, so to apply it on the partition function, we have
to separate each operator through a Trotter decomposition. This introduces a systematic error for non-commuting
operators. The decomposition is executed in analogous way to the transverse-field Ising model in Section 1.1.3. After
doing that and mapping the system to 𝑑 + 1 dimensions in the process, the partition function can be written as

𝑍 = Tr [exp(−𝛽�̂�)] = Tr𝐶, ̂𝒄†, ̂𝒄 [exp (𝑆B(𝐶) + ̂𝒄†𝑉 (𝐶) ̂𝒄)] .

Here, 𝐶 is the 𝑑 + 1 dimensional bosonic configuration, ̂𝒄† (̂𝒄) are vectors containing all fermionic creation (an-
nihilation) operators in 𝑑 + 1 dimensional space. 𝑆B is the purely bosonic contribution to the action and 𝑉 is a
matrix encoding the structure of the fermions. Since the fermions are non-interacting, they can be integrated out by
performing the trace over the Fock space, leaving a purely bosonic theory. This results in a determinant:

𝑍 = Tr𝐶 [exp (𝑆B(𝐶)) det(𝑉 (𝐶))] .

The “only” challenge remaining is to find an efficient way to sample 𝐶. Then we can calculate observables as:

⟨𝑂⟩ = ∑𝐶 𝑂(𝐶)𝑤(𝐶)
∑𝐶 𝑤(𝐶) 𝑤(𝑐) = exp (𝑆B(𝐶)) det(𝑉 (𝐶))

In practice, the execution is of course not that trivial. In particular because the determinant is very expensive to
calculate. One very versatile algorithm has been developed by Blankenbecler, Scalapino and Sugar [8], which is the
algorithmALF is using. This has been my introduction to theMonte Carlo method. For more details on the algorithm
and implementation used throughout this work, see [8, 9, 10, 12].
The next chapter starts with the presentation of my actual research projects.

14 (a) This Hubbard term is not in the more well-known form ̂𝑐†
↑ ̂𝑐↑ ̂𝑐†

↓ ̂𝑐↓, but if we perform the square, we get this term plus a chemical potential
(and a constant), which can be subtracted in an additional single particle term.
(b) ALF uses a discrete equivalent of this transformation, summarizing over four field values instead of a real numbers. This introduces a

systematic error 𝒪(Δ4
𝜏), but it is negligible to the systematic Trotter error 𝒪(Δ2

𝜏).

20 Chapter 1. Introduction

Projects

21

CHAPTER

TWO

NEMATIC QUANTUM CRITICALITY IN DIRAC SYSTEMS

The results presented in this chapter are the outcome of a collaboration with Lukas Janssen, Kai Sun, Zi Yang Meng,
Igor F. Herbut, Matthias Vojta, and Fakher F. Assaad. These findings have been published in [14], with significant
portions reproduced here verbatim. My contributions to the project comprise the quantum Monte Carlo (QMC) and
mean field calculations, including the implementation of the models in code and the creation of corresponding figures.
The 𝜖-expansion has been performed by L. J., the models are designed by F. F. A. and K. S., while the interpretation
of data and written text is a combined work of all authors.

2.1 Introduction

In a strongly correlated electron system, global symmetries, such as spin rotation, point group, or translational sym-
metries, can be spontaneously broken as a function of some external tuning parameter. This challenging problem
has been studied extensively numerically and experimentally over the last years and impacts our understanding of
quantum criticality [37] in cuprates [38] and heavy fermions [39]. The problem greatly simplifies when the Fermi
surface reduces to isolated Fermi points in 2+ 1 dimensions and the critical point features emergent Lorentz symme-
try. In this context, spin, time reversal, and translational symmetry breaking generically correspond to the dynamical
generation of mass terms [40], and the semimetal-to-insulator transition belongs to one of the various Gross-Neveu
universality classes [41, 42, 43, 44, 45, 46, 47].
Across nematic transitions, rotational symmetry is spontaneously broken [48, 49]. For continuum Dirac fermions
with Hamiltonian 𝐻(𝒌) = 𝑣 (𝑘𝑥𝜎𝑥 + 𝑘𝑦𝜎𝑦) in momentum space, where 𝝈 are Pauli spin matrices and 𝑣 is the
Fermi velocity, nematic transitions correspond to the dynamical generation of nonmass terms, such as 𝑚𝜎𝑥. They
shift the position of the Dirac cone and as such break rotational, and therewith also Lorentz, symmetries. Such
nematic transitions have been studied theoretically in the past in the context of 𝑑-wave superconductors [50, 51, 52,
53, 54] and bilayer graphene [55]. Fundamental questions pertaining to the very nature of the transition remain open:
While initial renormalization group (RG) calculations based on the 𝜖 expansion suggested a first-order transition [50,
51], a continuous transition has been found in large-N analyses [52, 53]. In this work, we use quantum Monte
Carlo (QMC) simulations and a revised 𝜖-expansion analysis to study these transitions. We introduce two different
models of Dirac fermions with twofold and fourfold lattice rotational symmetries, respectively. They are designed to
feature a nematic transition, tuned by a parameter ℎ. The fermion dispersion of these models and the meandering
of their Dirac cones are shown in Fig. 2.1(a). We demonstrate numerically and analytically that for both models this
transition is continuous, realizing a new family of quantum universality classes in Dirac systems without emergent
Lorentz invariance.
This chapter is organized as follows. In Sec. 2.2 we define the models and derive their symmetries. In Sec. 2.3 we
perform a mean-field analysis of the models. In Sec. 2.4 we derive the continuum-field theories of the models. In
Sec. 2.5 we perform an 𝜖-expansion analysis of these field theories, finding a continuous transition for both models,
where App. A.1 contains more details on the analysis. In Sec. 2.6 we introduce the numerical method used for the
QMC simulations and prove the absence of the negative sign problem. In Sec. 2.8 we define the QMC observables
and show numerical results confirming a continuous transition for both models. In Sec. 2.9 we summarize our results.
Furthermore, App. A.2 demonstrates how to use pyALF (cf. Section 4) to reproduce the QMC results of this
chapter. App. A.3 and App. A.4 display the source code used for data collapse and retrieving the fermion dispersions,
respectively. Finally, App. A.5 shows that the results from Sec. 2.8 do not change qualitatively when varying the
number of spin degrees of freedom 𝑁𝜎 or the coupling parameter 𝜉.

23

Dissertation Jonas Schwab

0

0

kx

ky

(a1)
C2v Model

kx

ky

(b1)
Disordered

kx

ky

(c1)
Critical

kx

ky

(d1)
Ordered

0

0

kx

ky

(a2)
C4v Model

kx

ky

(b2)
Disorderd

kx

ky

(c2)
Critical

kx

ky

(d2)
Ordered

0

1

2

3

En
er

gy
 sc

ale
 (a

. u
.)

Fig. 2.1: (a) Contour plot of the fermion dispersion in the disordered phase from mean-field theory. The plotted
area indicates the Brillouin zone. The green lines and arrows indicate the point group symmetries. Black (gray) dots
sketch the meandering of the Dirac cones in the nematic phase for ⟨ ̂𝑠𝑧

𝑹⟩ > 0 (< 0). (b)-(d) Fermion dispersion from
QMC at 𝐿 = 20 for (b) ℎ = 5.0 > ℎc featuring isotropic Dirac cones (c) ℎ ≃ ℎc, ℎ ≈ 3.27 (left) and ℎ ≈ 3.65
(right) featuring anisotropic Dirac cones, and (d) at ℎ = 1.0 < ℎc featuring broken point-group symmetries. Color
scale applies to all plots.

2.2 Models

Inspired from Refs. [49, 56, 57], we design two models of (2+1)-dimensional Dirac fermions, ℋ0, coupled to a
transverse-field Ising model (TFIM),

ℋIsing = −𝐽 ∑
⟨𝑹,𝑹′⟩

̂𝑠𝑧
𝑹 ̂𝑠𝑧

𝑹′ − ℎ ∑
𝑹

̂𝑠𝑥
𝑹, (2.1)

where 𝑹 denotes a unit cell and ⟨𝑹, 𝑹′⟩ runs over adjacent unit cells. A Yukawa coupling, ℋYuk, between the Ising
field and a nematic fermion bilinear yields the desired models, ℋ = ℋ0 + ℋIsing + ℋYuk, that correspond to one
of many possible lattice regularizations of the continuum field theories of Eqs. (2.18) and (2.19).
In the 𝐶2𝑣 model, depicted in Fig. 2.2(a), we employ a 𝜋-flux Hamiltonian on the square lattice as

ℋ𝐶2𝑣
0 = −𝑡 ∑

𝑹

𝑁𝜎

∑
𝜎=1

̂𝑎†
𝑹,𝜎(̂𝑏𝑹,𝜎𝑒−𝑖 𝜋

4 + ̂𝑏𝑹+𝒆−,𝜎𝑒𝑖 𝜋
4

+ �̂�𝑹+𝒆−−𝒆+,𝜎𝑒−𝑖 𝜋
4 + ̂𝑏𝑹−𝒆+,𝜎𝑒𝑖 𝜋

4) + H.c.,
(2.2)

where ̂𝑎 and ̂𝑏 with spin index 𝜎 are fermion annihilation operators on the two sublattices, 𝑡 is the hopping parameter,
and𝑁𝜎 = 2 is the number of spin degrees of freedom. ℋ0 features two inequivalent Dirac points per spin component
in the Brillouin zone (BZ). The Ising spins ̂𝑠𝑹 couple, with the sign structure indicated in Fig. 2.2(a), to the nearest-
neighbor fermion hopping terms,

ℋ𝐶2𝑣
Yuk = −𝜉 ∑

𝑹

𝑁𝜎

∑
𝜎=1

̂𝑠𝑧
𝑹 ̂𝑎†

𝑹,𝜎(̂𝑏𝑹,𝜎𝑒−𝑖 𝜋
4 − ̂𝑏𝑹+𝒆−,𝜎𝑒𝑖 𝜋

4

− �̂�𝑹+𝒆−−𝒆+,𝜎𝑒−𝑖 𝜋
4 + ̂𝑏𝑹−𝒆+,𝜎𝑒𝑖 𝜋

4) + H.c.,
(2.3)

where 𝜉 denotes the coupling strength.

24 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

Fig. 2.2: Sketch of (a) 𝐶2𝑣 and (b) 𝐶4𝑣 models, defined on 𝜋-flux single-layer and bilayer square lattices, with lattice
vectors 𝒆+/− and 𝒆𝑥/𝑦, respectively. Dark pink regions indicate unit cells, containing two orbitals (𝑎 and 𝑏) and one
Ising spin (green arrow) in both cases. Fermions hop along the red lines and acquire a phase factor 𝑒𝑖𝜋/4 when
following the direction of the arrow. Red and blue squares in (a) indicate the sign structure in the Yukawa coupling
of the 𝐶2𝑣 model.

The model has a 𝐶2𝑣 point group symmetry, composed of reflections, ̂𝑇± on the 𝒆± = 𝒆𝑥 ± 𝒆𝑦 axis. ̂𝑇± pins the
Dirac cones to the 𝑲± = (𝜋/2, ±𝜋/2) points in the BZ. Aside from the above reflections, 𝜋 rotations about the 𝑧
axis are obtained as ̂𝑇+ ̂𝑇−. Further, the model exhibits an explicit SU(𝑁𝜎) spin symmetry that is enlarged to O(2𝑁𝜎)
(cf. Section 2.6.1.1).
The 𝐶4𝑣 model corresponds to a bilayer 𝜋-flux model, in which the Ising spins are located on the rungs, Fig. 2.2(b).
The fermion hopping Hamiltonian is

ℋ𝐶4𝑣
0 = −𝑡 ∑

𝑹

𝑁𝜎

∑
𝜎=1

̂𝑎†
𝑹,𝜎(̂𝑏𝑹+𝒆𝑥,𝜎𝑒𝑖 𝜋

4 + ̂𝑏𝑹−𝒆𝑥,𝜎𝑒𝑖 𝜋
4

+ ̂𝑏𝑹+𝒆𝑦,𝜎𝑒−𝑖 𝜋
4 + ̂𝑏𝑹−𝒆𝑦,𝜎𝑒−𝑖 𝜋

4) + H.c.,
(2.4)

featuring four Dirac cones per spin component. The Yukawa coupling reads

ℋ𝐶4𝑣
Yuk = −𝜉 ∑

𝑹

𝑁𝜎

∑
𝜎=1

𝑖 ̂𝑠𝑧
𝑹 ̂𝑎†

𝑹,𝜎 ̂𝑏𝑹,𝜎 + H.c., (2.5)

amounting to a coupling of the Ising spins to the interlayer fermion current. The 𝐶4𝑣 Hamiltonian commutes with
̂𝑇𝜋/2, corresponding to 𝜋/2 rotation about the 𝑧 axis. The model is invariant under reflections ̂𝑇𝑥 and ̂𝑇𝑦 along the 𝑥

and 𝑦 axes, respectively. Reflections along 𝒆± = 𝒆𝑥 ± 𝒆𝑦, denoted by ̂𝑇±, can be derived from ̂𝑇𝜋/2, ̂𝑇𝑥, and ̂𝑇𝑦, and
therefore also leave the model invariant. The model hence has a 𝐶4𝑣 symmetry. Particle-hole symmetry, imposes
𝐴(𝒌, 𝜔) = 𝐴(−𝒌 + 𝑸, −𝜔), where 𝑸 = (𝜋, 𝜋) such that alongside with the 𝐶4𝑣 symmetry the Dirac cones are
pinned to the ±𝑲± points in the BZ (cf. Section 2.2.2).

2.2.1 Fourier transformed models

We define the Fourier transformation as:

(̂𝑎†
𝑹,𝜎
̂𝑏†
𝑹,𝜎

) = 1√
𝑁

∑
𝒌

𝑒−𝑖𝒌𝑹 (̂𝑎†
𝒌,𝜎
̂𝑏†
𝒌,𝜎

)

𝑠𝑧
𝑹 = 1

𝑁 ∑
𝒒

𝑠𝑧
𝒒𝑒𝑖𝒒𝑹

(2.6)

with this definition, both models take the form

ℋ = −
𝑁𝜎

∑
𝜎=1

∑
𝒌

̂𝑎†
𝒌,𝜎(̂𝑏𝒌,𝜎𝑍0(𝒌) + 𝜉

𝑁 ∑
𝒒

̂𝑏𝒌−𝒒,𝜎𝑠𝑧
𝒒𝑍Yuk(𝒌)) + H.c. + 𝐻Ising (2.7)

2.2. Models 25

Dissertation Jonas Schwab

with

𝑍0(𝒌) = { 2𝑡 (𝑒𝑖 𝜋
4 cos 𝑘𝑥 + 𝑒−𝑖 𝜋

4 cos 𝑘𝑦) 𝑒−𝑖𝒌𝑦 𝐶2𝑣 model
2𝑡 (𝑒𝑖 𝜋

4 cos 𝑘𝑥 + 𝑒−𝑖 𝜋
4 cos 𝑘𝑦) 𝐶4𝑣 model

𝑍Yuk(𝒌) = { 𝑖2 (−𝑒𝑖 𝜋
4 sin 𝑘𝑥 + 𝑒−𝑖 𝜋

4 sin 𝑘𝑦) 𝑒−𝑖𝒌𝑦 𝐶2𝑣 model
𝑖 𝐶4𝑣 model.

2.2.2 Symmetries

2.2.2.1 The 𝐶2𝑣 model

The First model has a 𝐶2𝑣 symmetry, consisting of two reflections: 𝑇+ and 𝑇− on 𝒆± = 𝒆𝑥 ± 𝒆𝑦, the 𝜋 rotation
needed by the point group can be obtained as 𝑇𝜋 = 𝑇+ ⋅ 𝑇−. The 𝑇− invariance hinges on the Z2 Ising symmetry,
𝑠𝑧 → −𝑠𝑧, and is therefore broken in the ordered phase.
The 𝐶2𝑣 symmetry pins the Dirac points (up to a gauge choice) to (𝜋/2, ±𝜋/2), while in the ordered phase, mean-
dering parallel to 𝒆+ is possible.
To show this symmetry, we expand the momentum- and real-space vectors as: 𝒌 = 𝑘+𝒆+ + 𝑘−𝒆− and 𝑹 =
𝑅+𝒆+ + 𝑅−𝒆−.
The first reflection 𝑇+ reads:

̂𝑇 −1
+ (̂𝑎†

𝒌,𝜎
̂𝑏†
𝒌,𝜎

) ̂𝑇+ = (
̂𝑏†
(𝑘+,−𝑘−),𝜎
̂𝑎†
(𝑘+,−𝑘−),𝜎𝑒−𝑖𝑘+

)

̂𝑇 −1
+ 𝑠𝑧

𝒒 ̂𝑇+ = 𝑠𝑧
(𝑞+,−𝑞−)

(2.8)

Inserting the above in Eq. (2.7), we obtain:

̂𝑇 −1
+ ℋ𝐶2𝑣 ̂𝑇+ =

= − ∑
𝒌

𝑒𝑖𝑘+ ̂𝑏†
(𝑘+,−𝑘−),𝜎(̂𝑎(𝑘+,−𝑘−),𝜎𝑍𝐶2𝑣

0 (𝒌) + 𝜉 ∑
𝒒

̂𝑎(𝑘+−𝑞+,−𝑘−+𝑞−),𝜎 ̂𝑠𝑧
(𝑞+,−𝑞−)𝑍

𝐶2𝑣
Yuk (𝒌)) + H.c. + 𝐻Ising

= − ∑
𝒌

𝑒−𝑖𝑘+ ̂𝑎†
(𝑘+,𝑘−),𝜎(̂𝑏(𝑘+,𝑘−),𝜎 ̄𝑍𝐶2𝑣

0 (𝑘+, −𝑘−) + 𝜉 ∑
𝒒

̂𝑏(𝑘+−𝑞+,𝑘−−𝑞−),𝜎 ̂𝑠𝑧
(𝑞+,𝑞−) ̄𝑍𝐶2𝑣

Yuk (𝑘+, −𝑘−)) + H.c. + 𝐻Ising

[
̄𝑍𝐶2𝑣
0 (𝑘+, −𝑘−) = 𝑍𝐶2𝑣

0 (𝒌)𝑒𝑖𝑘+

̄𝑍𝐶2𝑣
Yuk (𝑘+, −𝑘−) = 𝑍𝐶2𝑣

Yuk (𝒌)𝑒𝑖𝑘+
]

= − ∑
𝒌

̂𝑎†
(𝑘+,𝑘−),𝜎(̂𝑏(𝑘+,𝑘−),𝜎𝑍𝐶2𝑣

0 (𝒌) + 𝜉 ∑
𝒒

̂𝑏𝒌−𝒒,𝜎 ̂𝑠𝑧
𝒒𝑍𝐶2𝑣

Yuk (𝒌)) + H.c. + 𝐻Ising

= ℋ𝐶2𝑣

In real space, ̂𝑇+ translates to:

̂𝑇 −1
+ (̂𝑎†

𝑹,𝜎
̂𝑏†
𝑹,𝜎

) ̂𝑇+ = (
̂𝑏†
(𝑅+,−𝑅−),𝜎

̂𝑎†
(𝑅++1,−𝑅−),𝜎

)

̂𝑇 −1
+ 𝑠𝑧

𝑹 ̂𝑇+ = 𝑠𝑧
(𝑅+,−𝑅−)

The second reflection 𝑇− can be expressed as:

̂𝑇 −1
− (̂𝑎†

𝒌,𝜎
̂𝑏†
𝒌,𝜎

) ̂𝑇− = (
̂𝑏†
(−𝑘+,𝑘−),𝜎
̂𝑎†
(−𝑘+,𝑘−),𝜎𝑒𝑖𝑘−

)

̂𝑇 −1
− 𝑠𝑧

𝒒 ̂𝑇− = −𝑠𝑧
(−𝑞+,𝑞−)

(2.9)

26 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

Inserting this into Eq. (2.7), we obtain:

̂𝑇 −1
− ℋ𝐶2𝑣 ̂𝑇− =

= − ∑
𝒌

𝑒−𝑖𝑘− ̂𝑏†
(−𝑘+,𝑘−),𝜎(̂𝑎(−𝑘+,𝑘−),𝜎𝑍0(𝒌) + 𝜉 ∑

𝒒
̂𝑎(−𝑘++𝑞+,𝑘−−𝑞−),𝜎(− ̂𝑠𝑧

(−𝑞+,𝑞−))𝑍I(𝒌)) + H.c. + 𝐻Ising

= − ∑
𝒌

𝑒𝑖𝑘− ̂𝑎†
(𝑘+,𝑘−),𝜎(̂𝑏(𝑘+,𝑘−),𝜎 ̄𝑍0(−𝑘+, 𝑘−) + 𝜉 ∑

𝒒
̂𝑏(𝑘+−𝑞+,𝑘−−𝑞−),𝜎(− ̂𝑠𝑧

(𝑞+,𝑞−)) ̄𝑍I(−𝑘+, 𝑘−)) + H.c. + 𝐻Ising

[
̄𝑍0(−𝑘+, 𝑘−) = 𝑍𝐶2𝑣

0 (𝒌)𝑒−𝑖𝑘−

̄𝑍I(−𝑘+, 𝑘−) = −𝑍𝐶2𝑣
Yuk (𝒌)𝑒−𝑖𝑘−

]

= − ∑
𝒌

̂𝑎†
𝒌,𝜎(̂𝑏𝒌,𝜎𝑍𝐶2𝑣

0 (𝒌) + 𝜉 ∑
𝒒

̂𝑏𝒌−𝒒 ̂𝑠𝑧
𝒒𝑍𝐶2𝑣

Yuk (𝒌)) + H.c. + 𝐻Ising

= ℋ𝐶2𝑣

In real space, ̂𝑇− translates to:

̂𝑇 −1
− (̂𝑎†

𝑹,𝜎
̂𝑏†
𝑹,𝜎

) ̂𝑇− = (
̂𝑏†
(−𝑅+,𝑅−),𝜎

̂𝑎†
(−𝑅+,𝑅−−1),𝜎

)

̂𝑇 −1
− 𝑠𝑧

𝑹 ̂𝑇− = 𝑠𝑧
(−𝑅+,𝑅−)

2.2.2.2 The 𝐶4𝑣 model

The Second model has a 𝐶4𝑣 symmetry, consisting of a rotation by 𝜋
2 and reflections on the x- and y-axis.

The corresponding operators in momentum space are:

̂𝑇 −1
𝜋/2 (̂𝑎†

𝒌,𝜎
̂𝑏†
𝒌,𝜎

) ̂𝑇𝜋/2 = (
̂𝑏†
(−𝑘𝑦,𝑘𝑥),𝜎
̂𝑎†
(−𝑘𝑦,𝑘𝑥),𝜎

) ̂𝑇 −1
𝑥 (̂𝑎†

𝒌,𝜎
̂𝑏†
𝒌,𝜎

) ̂𝑇𝑥 = (
̂𝑎†
(𝑘𝑥,−𝑘𝑦),𝜎
̂𝑏†
(𝑘𝑥,−𝑘𝑦),𝜎

) ̂𝑇 −1
𝑦 (̂𝑎†

𝒌,𝜎
̂𝑏†
𝒌,𝜎

) ̂𝑇𝑦 = (
̂𝑎†
(−𝑘𝑥,𝑘𝑦),𝜎
̂𝑏†
(−𝑘𝑥,𝑘𝑦),𝜎

)

̂𝑇 −1
𝜋/2 ̂𝑠𝑧

𝒒 ̂𝑇𝜋/2 = − ̂𝑠𝑧
(−𝑞𝑦,𝑞𝑥) ̂𝑇 −1

𝑥 ̂𝑠𝑧
𝒒 ̂𝑇𝑥 = ̂𝑠𝑧

(𝑞𝑥,−𝑞𝑦) ̂𝑇 −1
𝑦 ̂𝑠𝑧

𝒒 ̂𝑇𝑦 = ̂𝑠𝑧
(−𝑞𝑥,𝑞𝑦)

And in real space:

̂𝑇 −1
𝜋/2 (̂𝑎†

𝑹,𝜎
̂𝑏†
𝑹,𝜎

) ̂𝑇𝜋/2 = (
̂𝑏†
(−𝑅𝑦,𝑅𝑥),𝜎
̂𝑎†
(−𝑅𝑦,𝑅𝑥),𝜎

) ̂𝑇 −1
𝑥 (̂𝑎†

𝑹,𝜎
̂𝑏†
𝑹,𝜎

) ̂𝑇𝑥 = (
̂𝑎†
(𝑅𝑥,−𝑅𝑦),𝜎
̂𝑏†
(𝑅𝑥,−𝑅𝑦),𝜎

) ̂𝑇 −1
𝑦 (̂𝑎†

𝑹,𝜎
̂𝑏†
𝑹,𝜎

) ̂𝑇𝑦 = (
̂𝑎†
(−𝑅𝑥,𝑅𝑦),𝜎
̂𝑏†
(−𝑅𝑥,𝑅𝑦),𝜎

)

̂𝑇 −1
𝜋/2 ̂𝑠𝑧

𝑹 ̂𝑇𝜋/2 = − ̂𝑠𝑧
(−𝑅𝑦,𝑅𝑥) ̂𝑇 −1

𝑥 ̂𝑠𝑧
𝑹 ̂𝑇𝑥 = ̂𝑠𝑧

(𝑅𝑥,−𝑅𝑦) ̂𝑇 −1
𝑦 ̂𝑠𝑧

𝑹 ̂𝑇𝑦 = ̂𝑠𝑧
(−𝑅𝑥,𝑅𝑦)

In the Ising ordered phase, the Ising symmetry ̂𝑠𝑧
𝑹 → − ̂𝑠𝑧

𝑹 is broken, which reduces ̂𝑇𝜋/2 to ̂𝑇𝜋, such that the 𝐶4𝑣
symmetry is reduced to 𝐶2𝑣. This reduced symmetry allows the cones to meander.
Particle-hole symmetry:
The particle-hole symmetry ̂𝑇ph implies that energy eigenstates satisfy 𝐸(𝒌) = −𝐸(−𝒌 + 𝑸), 𝑸 = (𝜋, 𝜋).

̂𝑇 −1
ph 𝛼 (̂𝑎†

𝑹,𝜎
̂𝑏†
𝑹,𝜎

) ̂𝑇ph = ̄𝛼(−1)𝑅𝑥+𝑅𝑦 (̂𝑎𝑹,𝜎
̂𝑏𝑹,𝜎

)

̂𝑇 −1
ph 𝛼𝑠𝑧

𝑹 ̂𝑇ph = − ̄𝛼𝑠𝑧
𝑹

(2.10)

̂𝑇 −1
ph 𝛼 (̂𝑎†

𝒌,𝜎
̂𝑏†
𝒌,𝜎

) ̂𝑇ph = ̄𝛼 (̂𝑎𝑸−𝒌,𝜎
̂𝑏𝑸−𝒌,𝜎

) 𝑸 = (𝜋
𝜋)

̂𝑇 −1
ph 𝛼𝑠𝑧

𝒒 ̂𝑇ph = − ̄𝛼𝑠𝑧
−𝒒

(2.11)

2.2. Models 27

Dissertation Jonas Schwab

Inserting this in Eq. (2.7), we obtain:

̂𝑇 −1
ph ℋ𝐶4𝑣 ̂𝑇ph = − ∑

𝒌
̂𝑎𝑸−𝒌(�̂�†

𝑸−𝒌 ̄𝑍𝐶4𝑣
0 (𝒌) + 𝜉

𝑁 ∑
𝒒

̂𝑏†
𝑸−𝒌+𝒒 (−𝑠𝑧

−𝒒) ̄𝑍𝐶4𝑣
Yuk (𝒌)) + H.c. + 𝐻Ising

= ∑
𝒌

̂𝑎†
𝑸−𝒌(̂𝑏𝑸−𝒌𝑍𝐶4𝑣

0 (𝒌) + 𝜉
𝑁 ∑

𝒒
̂𝑏𝑸−𝒌+𝒒 (−𝑠𝑧

−𝒒) 𝑍𝐶4𝑣
Yuk (𝒌)) + H.c. + 𝐻Ising

= ∑
𝒌

̂𝑎†
𝒌(̂𝑏𝒌𝑍𝐶4𝑣

0 (𝑸 − 𝒌) + 𝜉
𝑁 ∑

𝒒
̂𝑏𝒌−𝒒 (−𝑠𝑧

𝒒) 𝑍𝐶4𝑣
Yuk (𝑸 − 𝒌)) + H.c. + 𝐻Ising

[𝑍𝐶4𝑣
0 (𝑸 − 𝒌) = −𝑍𝐶4𝑣

0 (𝒌)
𝑍𝐶4𝑣
Yuk (𝑸 − 𝒌) = 𝑍𝐶4𝑣

Yuk (𝒌)]

= − ∑
𝒌

̂𝑎†
𝒌(̂𝑏𝒌𝑍𝐶4𝑣

0 (𝒌) + 1
𝑁 ∑

𝒒
̂𝑏𝒌−𝒒 (𝑠𝑧

𝒒) 𝑍𝐶4𝑣
Yuk (𝒌)) + H.c. + 𝐻Ising

= ℋ𝐶4𝑣

As a result of this symmetry, the single particle spectral function satisfies

𝐴(𝒌, 𝜔) = 𝐴(−𝒌 + 𝑸, −𝜔), with 𝑸 = (𝜋, 𝜋).

2.3 Lattice mean-field theory

The key point of both models is that the point group and particle-hole symmetries are tied to the flipping of the Ising
spin degree of freedom. In the large-ℎ limit, the ground state has the full symmetry of the model Hamiltonian and
at the mean-field level, we can set ⟨ ̂𝑠𝑧

𝑹⟩ = 0. In this limit, the Dirac cones are pinned by symmetry. In the opposite
small-ℎ limit, the Ising spins order, i.e. ⟨ ̂𝑠𝑧

𝑹⟩ ≠ 0. Thereby, the 𝐶2𝑣 (𝐶4𝑣) symmetry is reduced to ̂𝑇+ (𝐶2𝑣). At the
mean-field level, this induces a meandering of the Dirac points in the BZ, see Fig. 2.1(a), and an anisotropy in the
Fermi velocities. In this section, we present the mean-field calculation. At this level of approximation, the transition
turns out to be continuous, in agreement with the large-𝑁 analysis [53].
We expand Eq. (2.7) around ⟨ ̂𝑠𝑧

𝑹⟩ ≡ 𝜙. The resulting mean-field Hamiltonian reads:

ℋMF =
𝑁𝜎

∑
𝜎=1

∑
𝒌

�̂�𝒌,𝜎(𝜙𝜉) + ∑
𝑹

̂𝐼𝑹(𝜙). (2.12)

With:

�̂�𝒌,𝜎(𝜙𝜉) = − ̂𝑎†
𝒌,𝜎 ̂𝑏𝒌,𝜎𝑍(𝒌, 𝜙𝜉) 𝑍(𝒌, 𝜙𝜉) = 𝑍0(𝒌) + 𝜙𝜉𝑍Yuk(𝒌) ̂𝐼𝑹(𝜙) = −4𝐽 (𝜙 ̂𝑠𝑧

𝑹 − 1
2 𝜙2) − ℎ ̂𝑠𝑥

𝑹.

The fermionic dispersion is

± |𝑍(𝒌, 𝜙𝜉)| . (2.13)

To determine the nature of the zero-temperature phase transition, we determine the order parameter 𝜙 for a given
transverse field ℎ by minimizing the ground state energy 𝐸0,MF = lim𝛽→∞ 𝐸MF = lim𝛽→∞ ⟨ℋMF⟩MF .

𝐸MF = ⟨ℋMF⟩MF = Tr(exp(−𝛽ℋMF)ℋMF)
Tr(exp(−𝛽ℋMF))

= 𝑁𝜎 ∑
𝒌

|𝑍(𝒌, 𝜙𝜉)|1 − exp (𝛽|𝑍(𝒌, 𝜙𝜉)|)
1 + exp (𝛽|𝑍(𝒌, 𝜙𝜉)|) + 𝐿2 (2𝜙2 − √ℎ2 + 16𝜙2 tanh (𝛽√ℎ2 + 16𝜙2))

28 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

lim
𝛽→∞

𝐸MF
𝐿2 = − 𝑁𝜎

𝐿2 ∑
𝒌

|𝑍(𝒌, 𝜙𝜉)|
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜖F(𝐿,𝜙𝜉)

+ (2𝜙2 − √ℎ2 + 16𝜙2)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜖I(𝜙,ℎ)

𝜕𝜙𝜖F(𝐿, 𝜙) = −𝑁𝜎
𝐿2 ∑

𝒌

1
|𝑍(𝒌, 𝜙)|(ℜ (𝑍0(𝒌) ̄𝑍Yuk(𝒌)) + 𝜙|𝑍Yuk(𝒌)|2)

𝜕2
𝜙𝜖F(𝐿, 𝜙) = −𝑁𝜎

𝐿2 ∑
𝒌

(|𝑍Yuk(𝒌)|2
|𝑍(𝒌, 𝜙)| − ℜ (𝑍0(𝒌) ̄𝑍Yuk(𝒌))

|𝑍(𝒌, 𝜙)|3 (ℜ (𝑍0(𝒌) ̄𝑍Yuk(𝒌)) + 𝜙|𝑍Yuk(𝒌)|))

(2.14)

Equation (2.14) separates into a fermionic and an Ising part, 𝜖F and 𝜖I. While 𝜖I has a well-behaved, closed form, 𝜖F
has some non-analytic points for finite lattices (cf. Fig. 2.4). Namely, 𝜕2

𝜙𝜖F diverges, if 𝑍(𝒌, 𝜙𝜉) vanishes.
This corresponds to a finite-size artifact which can be qualitatively understood with the help of Fig. 2.3. Essentially,
𝜙 shifts the single particle energy and produces level crossing reminiscent of those produced when twisting boundary
conditions [58, 59]. Fig. 2.3 shows the valence band of a one-dimensional Dirac cone on a lattice with five 𝒌 points
at two different twists. As a function of the twist the 𝒌-point will cross the Fermi surface and at this crossing point,
a singularity in the kinetic energy – corresponding to a level crossing – will appear. This is explicitly shown in Fig.
2.5. This observation means that the thermodynamic limit and the derivative 𝜕𝜙 do not commute: one should first
take the thermodynamic limit prior to carrying out the derivative.
To avoid this artifact, we consider two different approaches:

1. Choose a weaker coupling 𝜉, such that the Dirac points do not cross the Fermi surface in proximity to the
critical point (see Fig. 2.5 vs Fig. 2.6). However, choosing a small 𝜉 may result in a slow flow from the 3d Ising
fixed point of the unperturbed Ising model to nematic criticality.

2. Choose antiperiodic boundary conditions in space for the fermions, so as to shift the 𝒌 points away from the
Fermi surface: Fig. 2.7. However, this choice results in large finite size effects presumably due to the boundary-
condition-induced finite size gap.

It turns out the first option is the best choice and that 𝜉 can be chosen large enough so as to minimize the aforemen-
tioned crossover effects.
The 𝐶4𝑣 model (Fig. 2.8) shows different behaviors between systems with linear sizes 𝐿 = 2 + 4ℕ and 𝐿 = 4ℕ. At
𝐿 = 4ℕ with periodic boundary conditions, the Dirac points in the disordered phase are located at 𝒌-points resolved
by the finite lattice. This is not the case at 𝐿 = 2 + 4ℕ (cf. Fig. 2.9). As a result, the 𝐿 = 4ℕ sizes have a smoothed-
out phase transition. Nevertheless, both 𝐿 = 4ℕ and 𝐿 = 2 + 4ℕ converge to the same result in the thermodynamic
limit. The Monte-Carlo simulations also have odd-even effects, as elaborated in Section 2.8.3. It turns out that even
system sizes produce nicer numerical results for the phase transition.

k

En
er

gy

Finite size
lattice points

k

Fig. 2.3: Sketch for understanding finite-size artifacts of Dirac systems as a function of 𝒌-quantization. Shown is
the valence band of a one-dimensional Dirac cone on a lattice of size 𝐿 = 5. We can see that the choice of the
momenta quantization (i.e. boundary conditions) affects the energy. Left: Dirac point belongs to the set of finite-size
𝒌-points. Right: Dirac point is between two finite-size 𝒌-points. In the quantizations shown on the left, the ground
state energy is higher, and a level crossing occurs when a 𝒌 point crosses the Fermi surface. In nematic transitions, the
translation symmetry is not broken such that momenta are well defined and the 𝒌 quantization for a given lattice size
remains unchanged. However, the position of the Dirac point meanders. The energy level crossing, that originates,
is reminiscent of that obtained when twisting boundary conditions [58, 59].

2.3. Lattice mean-field theory 29

Dissertation Jonas Schwab

5.0

4.5

4.0

F/L
2

C2v model

4.1

4.0

3.9

F/L
2

C4v model

2

0

2

F/L
2

L=10
L=12
L=14
L=500

0.5

0.0

0.5

F/L
2

L=10
L=12
L=14
L=16
L=500

1.0 0.5 0.0 0.5 1.010 4

100

104

108

1012

|2
F|/

L2

1.0 0.5 0.0 0.5 1.0

100

104

108

1012

|2
F|/

L2

Fig. 2.4: Fermionic part of Mean-field ground state energy. The second derivative with respect to the Ising field 𝜙
diverges at level crossings as described in the main text.

0.25

0.00

0.25

E M
F/L

2

(a)

h=6, L=10
h=6, L=300

1.0 0.5 0.0 0.5 1.0

9.825

9.800

9.775

E M
F/L

2

(b)

4.5 5.0 5.5 6.0 6.5 7.0
h

0.0

0.2

0.4

0.6

0.8

1.0
(c) L=10

L=20
L=40
L=300

Fig. 2.5: Mean-field results for the 𝐶2𝑣 model with coupling strength 𝜉 = 0.75. There are many discontinuities in
the order parameter 𝜙 when tuning the transverse field ℎ trough the phase transition. These finite size artifacts are
disappearing at 𝐿 → ∞.

30 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

1

0

1
E M

F/L
2

(a)

h=4.1, L=10
h=4.1, L=300

1.0 0.5 0.0 0.5 1.0
7.9

7.8

7.7

E M
F/L

2

(b)

2.5 3.0 3.5 4.0 4.5 5.0
h

0.0

0.2

0.4

0.6

0.8

1.0
(c) L=10

L=20
L=40
L=300

Fig. 2.6: Mean-field results for the 𝐶2𝑣 model with coupling strength 𝜉 = 0.25. Most discontinuities visible for
𝜉 = 0.75 (cf. Fig. 2.5) are avoided at this coupling strength.

Dirac point trajectory
for sz > 0
Dirac point trajectory
for sz < 0
finite size lattice points

0
kx

0k y

C2V model L = 8

0
kx

0k y

C2V model L = 8, anti-periodic boundaries

Fig. 2.7: Brillouin zone of𝐶2𝑣 model with 𝒌 points of a 8∗8 lattice. Left: With periodic boundary conditions. Right:
With antiperiodic boundary conditions for movement parallel to (1, −1). Also sketched: Dispersion in disordered
phase and trajectory of Dirac cones.

2.5 3.0 3.5 4.0 4.5 5.0 5.5
h

0.0

0.2

0.4

0.6

0.8

1.0 (a) L=10
L=12
L=14
L=18
L=20
L=300

4.6 4.7 4.8 4.9
h

0.00

0.05

0.10

0.15

0.20
(b)

L=18
L=20
L=22
L=298
L=300

3.00 3.25 3.500.8

0.9

Fig. 2.8: Mean-field results for the 𝐶4𝑣 model with coupling strength 𝜉 = 1. There is an qualitative difference
between system sizes 𝐿 = 2 + 4ℕ and 𝐿 = 4ℕ: The former converges faster, but both are still converging to the
same result for 𝐿 → ∞.

2.3. Lattice mean-field theory 31

Dissertation Jonas Schwab

Dirac point trajectory
for sz > 0
Dirac point trajectory
for sz < 0
finite size lattice points

0
kx

0k y

C4V model L = 6

0
kx

0k y

C4V model L = 8

Fig. 2.9: Brillouin zone of 𝐶4𝑣 model with 𝒌 points of 6∗6 and 8∗8 lattice. Also sketched: Dispersion in disordered
phase and trajectory of Dirac cones. Left: 6 ∗ 6 lattice, the Dirac cones in the disordered phase are each centered
between four 𝒌 points. Right: 8 ∗ 8 lattice, the Dirac cones in the disordered phase are directly resolved by the 𝒌
points.

To summarize, themean-field calculation finds a continuous transitions for bothmodels and to avoid finite size artifacts
in the QMC simulations, 𝜉 should not be chosen too large.

2.4 Continuum field theory

In order to investigate whether the above remains true upon the inclusion of order-parameter fluctuations, we derive
corresponding continuum field theories, which are amenable to RG analyses.
We derive the low energy model from Eq. (2.7) by expansion in 𝒌 around the nodal points 𝑲𝑖 and for a scalar Ising
field 𝜙(𝒒):

ℋ = −
𝑁𝜎

∑
𝜎=1

∑
𝑖

∫d𝜿 ̂𝑎†
𝑲𝑖+𝜿,𝜎(�̂�𝑲𝑖+𝜿,𝜎𝑍0(𝑲𝑖 + 𝜿)

+ 1
2𝜋 ∫d𝒒 ̂𝑏𝑲𝑖+𝜿−𝒒,𝜎𝜙(𝒒)𝑍Yuk(𝑲𝑖 + 𝜿)) + H.c. + 𝐻Ising{𝜙}

In leading order in 𝜿 we obtain:

ℋ = −
𝑁𝜎

∑
𝜎=1

∑
𝑖

∫d𝜿 ̂𝑎†
𝑲𝑖+𝜿,𝜎(̂𝑏𝑲𝑖+𝜿,𝜎𝜿∇𝑍0(𝑲𝑖)

+ 1
2𝜋 ∫d𝒒 ̂𝑏𝑲𝑖+𝜿−𝒒,𝜎𝜙(𝒒)𝑍Yuk(𝑲𝑖)) + H.c. + 𝐻Ising{𝜙}.

Introducing the Fourier transformations:

(̂𝑎𝑖
𝜎(𝒓)
̂𝑏𝑖
𝜎(𝒓)) = 1

2𝜋 ∫d𝜿 𝑒𝑖𝜿𝒓 (̂𝑎𝑲𝑖+𝜿,𝜎
̂𝑏𝑲𝑖+𝜿,𝜎

)

𝜙(𝒓) = 1
2𝜋 ∫d𝜿 𝑒𝑖𝒒𝒓𝜙(𝒒).

and defining:
𝒗𝑖 ≡ ∇𝑍0(𝑲𝑖) 𝐼𝑖 ≡ 𝑍Yuk(𝑲𝑖)

The Hamiltonian takes the form:

ℋ = −
𝑁𝜎

∑
𝜎=1

∑
𝑖

∫d𝒓 ̂𝑎𝑖
𝜎(𝒓)†(𝑖𝒗𝑖 ⋅ ∇𝒓 + 𝜙(𝒓)𝐼𝑖) ̂𝑏𝑖

𝜎(𝒓) + H.c. + 𝐻Ising{𝜙}. (2.15)

32 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

2.4.1 The 𝐶2𝑣 model

The 𝐶2𝑣 model has the nodal points 𝑲± = (𝜋/2
±𝜋/2). By defining the four-component Dirac spinor

Ψ𝜎(𝒓) = (̂𝑎+
𝜎 (𝒓) ̂𝑏+

𝜎 (𝒓) ̂𝑎−
𝜎 (𝒓) ̂𝑏−

𝜎 (𝒓))
T ,

where ̂𝑎±
𝜎 and ̂𝑏±

𝜎 corresponds to hole excitations near 𝑲± on the 𝐴 and 𝐵 sublattices, respectively, and

𝜏1 = (0 1
1 0) 𝜏2 = (0 −𝑖

𝑖 0) 𝜏3 = (1 0
0 −1) .

Eq. (2.15) can be written as

ℋ𝐶2𝑣 =
𝑁𝜎

∑
𝜎=1

∫d𝒓 Ψ†
𝜎(𝒓)[2𝑖𝑡 (𝜏2 0

0 −𝜏1
) 𝜕𝑟+

+ 2𝑖𝑡 (𝜏1 0
0 −𝜏2

) 𝜕𝑟−
+ 2

√
2𝜉𝜙(𝒓) (−𝜏2 0

0 −𝜏1
)]Ψ𝜎(𝒓)

+ 𝐻Ising{𝜙}.
Introducing the gamma matrices, that realize a four-dimensional representation of the Clifford algebra

𝛾0 = (−𝜏3 0
0 −𝜏3

) 𝛾1 = (𝜏1 0
0 𝜏2

) 𝛾2 = (−𝜏2 0
0 −𝜏1

) {𝛾𝛼, 𝛾𝛽} = 2𝛿𝛼𝛽,

we can write the action in the form

𝑆𝐶2𝑣 = ∫d𝐷𝑥
𝑁𝜎

∑
𝜎=1

[Ψ†
𝜎(𝑥)[𝟙𝜕𝜏 + 𝑣𝛾0𝛾1𝜕+ + 𝑣𝛾0𝛾2𝜕− + 𝑔𝜙(𝑥)𝛾2]Ψ𝜎(𝑥)] + 𝑆Ising({𝜙}). (2.16)

2.4.2 The 𝐶4𝑣 model

The 𝐶4𝑣 model has the nodal points 𝑲+± = (𝜋/2
±𝜋/2) and 𝑲−± = −𝑲±. By defining the eight-component Dirac

spinor

Ψ𝜎(𝒓) = (̂𝑎++
𝜎 (𝒓) ̂𝑏++

𝜎 (𝒓) ̂𝑎−+
𝜎 (𝒓) ̂𝑏−+

𝜎 (𝒓) ̂𝑎+−
𝜎 (𝒓) ̂𝑏+−

𝜎 (𝒓) ̂𝑎−−
𝜎 (𝒓) ̂𝑏−−

𝜎 (𝒓))
T ,

where ̂𝑎+±
𝜎 and ̂𝑏+±

𝜎 (̂𝑎−±
𝜎 and ̂𝑏−±

𝜎) correspond to hole excitations near 𝑲± (−𝑲±). Eq. (2.15) can be written as

ℋ𝐶4𝑣 =
𝑁𝜎

∑
𝜎=1

∫d𝒓 Ψ†
𝜎(𝒓)[

2𝑖𝑡((𝜏1 0
0 −𝜏1

) ⊕ (−𝜏2 0
0 𝜏2

))𝜕𝑟+
+ 2𝑖𝑡((−𝜏2 0

0 𝜏2
) ⊕ (𝜏1 0

0 −𝜏1
))𝜕𝑟−

+ 2
√

2𝜉𝜙(𝒓)((𝜏2 0
0 𝜏2

) ⊕ (𝜏2 0
0 𝜏2

))

]Ψ𝜎(𝒓) + 𝐻Ising{𝜙},

where ⊕ denotes the matrix direct sum. Introducing another set of gamma matrices, that also realize a four-
dimensional representation of the Clifford algebra

̃𝛾0 = (𝜏3 0
0 −𝜏3

) ̃𝛾1 = (𝜏1 0
0 𝜏1

) ̃𝛾2 = (𝜏2 0
0 𝜏2

) { ̃𝛾𝛼, ̃𝛾𝛽} = 2𝛿𝛼𝛽,

we can write the action in the compact form

𝑆𝐶4𝑣 = ∫d𝐷𝑥
𝑁𝜎

∑
𝜎=1

Ψ†
𝜎(𝑥)[𝟙𝜕𝜏 + 𝑣 (̃𝛾0 ̃𝛾1 ⊕ ̃𝛾0 ̃𝛾2) 𝜕+ + 𝑣 (̃𝛾0 ̃𝛾2 ⊕ ̃𝛾0 ̃𝛾1) 𝜕− + 𝑔𝜙(𝑥) (̃𝛾2 ⊕ ̃𝛾2)]Ψ𝜎(𝑥)

+ 𝑆Ising({𝜙}).
(2.17)

2.4. Continuum field theory 33

Dissertation Jonas Schwab

2.4.3 Finalized field theory

So, all in all, to leading order in the gradient expansion around the nodal points, we obtain the Euclidean action
𝑆 = ∫ d2𝑥d𝜏(ℒΨ + ℒ𝜙) with

ℒ𝐶2𝑣
Ψ = Ψ†

𝜎 (𝜕𝜏 + 𝛾0𝛾1𝑣∥𝜕+ + 𝛾0𝛾2𝑣⟂𝜕− + 𝑔𝜙𝛾2) Ψ𝜎. (2.18)

and

ℒ𝐶4𝑣
Ψ = Ψ†

𝜎[𝜕𝜏 + ̃𝛾0(̃𝛾1𝑣∥ ⊕ ̃𝛾2𝑣⟂)𝜕+ + ̃𝛾0(̃𝛾2𝑣⟂ ⊕ ̃𝛾1𝑣∥)𝜕− + 𝑔𝜙(̃𝛾2 ⊕ ̃𝛾2)]Ψ𝜎 (2.19)

In the above Lagrangians, we have assumed the summation convention over repeated indices. Furthermore, we allow
for anisotropic Fermi velocities 𝑣∥ and 𝑣⟂, corresponding to the directions parallel and perpendicular to the shift of
the Dirac cones in the ordered phase, with 𝑣∥ = 𝑣⟂ ∼ 𝑡 at the UV cutoff scale Λ. 𝜕± denotes the spatial derivative
in the direction along 𝑲±. The fermions couple via 𝑔 ∼ 𝜉 to the Ising order-parameter field 𝜙. The dynamics of the
Ising field is governed by the usual 𝜙4 Lagrangian,

ℒ𝜙 = 1
2𝜙(𝑟 − 𝜕2

𝜏 − 𝑐2
+𝜕2

+ − 𝑐2
−𝜕2

−)𝜙 + 𝜆𝜙4,

with the tuning parameter 𝑟, the boson velocities 𝑐±, and the bosonic self-interaction 𝜆.

2.5 𝜖 expansion

The presence of a unique upper critical spatial dimension of three allows an 𝜖 = 3 − 𝑑 expansion, with 𝜖 = 1
corresponding to the physical case. Because of the lack of Lorentz and continuous spatial rotational symmetries in
the low-energy models, it is useful to employ a regularization in the frequency only, which allows us to rescale the
different momentum components independently, and evaluate the loop integrals analytically (See Appendix A.1 for
details). Two central properties of nematic quantum phase transitions in Dirac systems are revealed by the one-loop
RG analysis: First, both models admit a stable fixed point featuring anisotropic power laws of the fermion and order
parameter correlation functions.
In the 𝐶2𝑣 model, both components of the Fermi velocity remain finite at the stable fixed point with 0 < 𝑣∗

∥ < 𝑣∗
⟂.

At the critical point, a unique timescale 𝜏 emerges for both fields Ψ and 𝜙 [60, 61], which scales with the two
characteristic length scales ℓ+ and ℓ− as 𝜏 ∼ ℓ𝑧+

+ ∼ ℓ𝑧−− , with associated dynamical critical exponents 𝑧± = [1 −
1
2 𝜂𝜙 + 1

2 𝜂±]−1 as (𝑧+, 𝑧−) = (1 + 0.3695𝜖, 1 + 0.1086𝜖) + 𝒪(𝜖2), reflecting the absence of Lorentz and rotational
symmetries at criticality.
By contrast, in the𝐶4𝑣 model, the fixed point is characterized by a maximal velocity anisotropy with (𝑣∗

∥, 𝑣∗
⟂) = (0, 1)

in units of fixed boson velocities 𝑐 ≡ 𝑐+ = 𝑐− = 1. This result is consistent with the large-𝑁 RG analysis in fixed
𝑑 = 2 [52]. The fact that 𝑣∗

∥ vanishes leads to the interesting behavior that the fixed-point couplings 𝑔2
∗ and 𝜆∗

are bound to vanish in this case as well. This happens in a way that the ratio (𝑔2/𝑣∥)∗ remains finite, such that the
boson anomalous dimensions become 𝜂𝜙 = 𝜂+ = 𝜂− = 𝜖. Importantly, as the fixed-point couplings 𝑔2

∗ and 𝜆∗

vanish, we expect the one-loop result for the critical exponents to hold at all loop orders in the 𝐶4𝑣 model. For the
correlation-length exponent, we find 1/𝜈 = 2 − 𝜖. The remaining exponents can then be computed by assuming the
usual hyperscaling relations [62]. The susceptibility exponent, for instance, becomes 𝛾 = 1, independent of 𝜖. This
result is again consistent with the large-𝑁 calculation and has previously already been argued to hold exactly [52].
We note that the values of the exponents in the 𝐶4𝑣 model are independent of the number of spinor components,
in contrast to the situation in the 𝐶2𝑣 model, as well as to the usual Gross-Neveu universality classes [43, 44, 45,
46, 57, 63]. The unique dynamical critical exponent in the 𝐶4𝑣 model becomes 𝑧 = 1. We emphasize, however,
that the critical point still does not feature emergent Lorentz symmetry [64] due to the anisotropic fermion spectral
function. The second important property revealed by the RG analysis is that the stable fixed points in both models are
approached only extremely slowly as function of RG scale, Fig. 2.10. This is universally true for the 𝐶4𝑣 model, in
which case 𝑣∥ corresponds to a marginally irrelevant parameter, hence scaling only logarithmically to zero while other
irrelevant operators rapidly die out. This defines a quasiuniversal flow [65, 66] in which only the velocity anisotropy
and not the initial ultraviolet values of other parameters determine the slow drift of the exponents. The RG suggests
that this regime emerges at scales 1/𝑏 ≲ 0.05 (cf. Appendix A.1), such that it will dominate numerical as well as
experimental realizations of this critical phenomena. For a reasonable set of ultraviolet starting values and 𝜖 = 1,

34 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

we find that the effective correlation-length exponent 1/𝜈eff (anomalous dimension 𝜂eff𝜙) approaches one from above
(below), with sizable deviations at intermediate RG scales. Moreover, we also observe that the initial flows at high
energy in the two models resemble each other, despite the fact that they substantially deviate from each other at low
energy. This suggests that the flow is generically slow in the 𝐶2𝑣 model as well.

(a) (b)

1.0
1.5
2.0
2.5
3.0
3.5
4.0

1.0

2.0
1.8
1.6
1.4
1.2

0.0 0.2 0.4 0.6 0.8 1.010.10.010.00110−410−510−6

1/1 1/1

�2{ model
�4{ model

�2{ model
�4{ model

{ ⊥
/{
‖

{ ⊥
/{
‖

Fig. 2.10: Ratio of Fermi velocities 𝑣⟂/𝑣∥ as function of RG scale 1/𝑏 for both models. We assume ultraviolet initial
values of 𝑣∥(𝑏 = 1) = 𝑣⟂(𝑏 = 1) = 0.25, and set 𝑔2/(𝑣∥𝑣⟂)(𝑏 = 1) to the value at the respective stable fixed
point. (a) Semilogarithmic, (b) linear plots. Starting at a temperature scale representative of the ultraviolet initial
parameters, one has to cool the system by 2 orders of magnitude to start observing the differences between both
models.

2.6 QMC setup

For the numerical simulations, we used the ALF program package [11, 12] that provides a general implementation
of the finite-temperature auxiliary field QMC algorithm [8, 9, 10]. To formulate the path integral, we use a Trotter
decomposition with time step Δ𝜏𝑡 = 0.1 and choose a basis where ̂𝑠𝑧

𝑹|𝑠𝑹⟩ = 𝑠𝑹|𝑠𝑹⟩. The configuration space
is that of a (2 + 1)-dimensional Ising model and we use a single-spin-flip update to sample it. As we will show in
Section 2.6.1 both models are negative-sign-problem free for all values of 𝑁𝜎 [67]. For our simulations, we have
used an inverse temperature 𝛽 = 4𝐿 for 𝐿 × 𝐿 lattices, and have checked that this choice of 𝛽 reflects ground-state
properties. For the results shown in the main text, we have fixed the parameters as 𝐽 = 𝑡 = 1 and 𝑁𝜎 = 2. In the
𝐶2𝑣 model, we choose 𝜉 = 0.25, since larger values of 𝜉 lead to spurious size effects that could falsely be interpreted
as first-order transitions, as discussed in Section 2.3, see also Ref. [57] for a detailed discussion. In the𝐶4𝑣 model, we
set 𝜉 = 1. As shown in Appendix A.5, other values of 𝜉 and 𝑁𝜎 do not alter the continuous nature of the transition.

2.6.1 Absence of negative sign problem

Here we use the Majorana representation to demonstrate, using the results of Ref. [67], the absence of negative sign
problem for all values of 𝑁𝜎. Both models have SU(𝑁𝜎) symmetry. Since the Ising spins couple symmetrically to
the fermion spins, SU(𝑁𝜎) symmetry is present for all Ising spin configurations. Thereby, the fermion determinant
of the SU(𝑁𝜎) model corresponds to that of the U(1) model (𝑁𝜎 = 1) elevated to the power 𝑁𝜎. It hence suffices
to demonstrate the absence of negative sign problem at 𝑁𝜎 = 1. In this section, we will hence omit the spin index.
Additionally we include a chemical potential term ℋ𝜇, to show that there is also no sign problem under doping for
even values of 𝑁𝜎.

2.6.1.1 The 𝐶2𝑣 model

Consider the canonical transformation,

(̂𝑎𝒌
̂𝑏𝒌

) → (1 0
0 𝑒−𝑖3𝜋/4) (̂𝑎𝒌−Δ𝑲

̂𝑏𝒌−Δ𝑲
)

with
̂𝑏𝑹 = 1√

𝑁
∑

𝒌∈𝐵𝑍
𝑒𝑖𝒌⋅𝑹 ̂𝑏𝒌

2.6. QMC setup 35

Dissertation Jonas Schwab

and Δ𝑲 = 1
4 (𝒃− − 𝒃+). Here, 𝒆𝑖 ⋅ 𝒃𝑗 = 2𝜋𝛿𝑖,𝑗. This canonical transformation renders the Hamiltonian real:

the 𝜋-flux, is realized by changing the sign of the intra unit-cell hopping with respect to the other hoppings. More
precisely after the transformation, the fermionic part of the Hamiltonian takes the form:

ℋ𝐶2𝑣
0 = −𝑡 ∑

𝑹
̂𝑎†
𝑹(− �̂�𝑹 + �̂�𝑹+𝒆−

+ ̂𝑏𝑹+𝒆−−𝒆+
+ ̂𝑏𝑹−𝒆+

) + H.c.

ℋ𝐶2𝑣
Yuk = −𝜉 ∑

𝑹
𝑠𝑹 ̂𝑎†

𝑹(− ̂𝑏𝑹 − ̂𝑏𝑹+𝒆−
− ̂𝑏𝑹+𝒆−−𝒆+

+ ̂𝑏𝑹−𝒆+
) + H.c.

ℋ𝐶2𝑣𝜇 = 𝜇 ∑
𝑹

(̂𝑎†
𝑹 ̂𝑎𝑹 + ̂𝑏†

𝑹 ̂𝑏𝑹)

(2.20)

In the above, we have considered an arbitrary set of Ising spins 𝑠𝑹 = ±1.
Since equation (2.20) is real, the corresponding fermion determinant for 𝑁𝜎 = 1 is also real and therefore positive
for even 𝑁𝜎.
For the sign to remain positive with odd 𝑁𝜎, we have to dismiss 𝐻𝜇 and introduce Majorana fermions:

̂𝑎†
𝑹 = 1

2 (̂𝛾𝑹,1 − 𝑖�̂�𝑹,2) ̂𝑏†
𝑹 = 1

2 (𝑖 ̂𝜂𝑹,1 + ̂𝜂𝑹,2) .

In the Majorana basis, the Fermionic part of the Hamiltonian reads:

ℋ𝐶2𝑣
0 = 𝑖𝑡

2 ∑
𝑹

�̂�T
𝑹(− �̂�𝑹 + �̂�𝑹+𝒆−

+ �̂�𝑹+𝒆−−𝒆+
+ �̂�𝑹−𝒆+

)

ℋ𝐶2𝑣
Yuk = 𝑖𝜉

2 ∑
𝑹

𝑠𝑹�̂�T
𝑹(− �̂�𝑹 − �̂�𝑹+𝒆−

− �̂�𝑹+𝒆−−𝒆+
+ �̂�𝑹−𝒆+

)

In the above, �̂�𝑇
𝑹 = (̂𝛾𝑹,1, ̂𝛾𝑹,2) and a similar form holds for �̂�𝑹 . The fact that the Hamiltonian is diagonal in

the Majorana index shows that it has a higher O(2𝑁𝜎) as opposed to the apparent SU(𝑁𝜎) one in the fermion
representation. It also has as consequence that, for the 𝑁𝜎 = 1 case, the fermion determinant is nothing but the
square of a Pfaffian that takes real values. Hence the negative sign problem is absent [68, 69].
We close this subsection by making contact with the work of Ref. [67], showing the absence of the sign problem with
a alternative approach. Let 𝝁 be a vector of Pauli matrices acting on the Majorana index. Adopting the notation of
Ref. [67], we can define:

̂𝑇 −
1 𝛼�̂�𝑹 (̂𝑇 −

1)−1 = ̄𝛼𝑖𝝁𝑦�̂�𝑹

̂𝑇 −
1 𝛼�̂�𝑹 (̂𝑇 −

1)−1 = − ̄𝛼𝑖𝝁𝑦�̂�𝑹

and

̂𝑇 +
2 𝛼�̂�𝑹 (̂𝑇 +

2)−1 = ̄𝛼𝝁𝑥�̂�𝑹

̂𝑇 +
2 𝛼�̂�𝑹 (̂𝑇 +

2)−1 = − ̄𝛼𝝁𝑥�̂�𝑹.

Since [̂𝑇 +
2 , ℋ𝐶2𝑣] = [̂𝑇 −

1 , ℋ𝐶2𝑣] = 0 and ̂𝑇 −
1 and ̂𝑇 +

2 anti-commute, our Hamiltonian belongs to the so-called
Majorana class, and is hence free of the negative sign problem.

2.6.1.2 The 𝐶4𝑣 model

Consider the spinor ̂𝒄†
𝑹 = (̂𝑎†

𝑹, ̂𝑏†
𝑹). With this notation, the fermionic part of the 𝐶4𝑣 model takes the form:

ℋ𝐶4𝑣
0 = −𝑡 ∑

𝑹∈𝐴,𝛿=±
(̂𝒄†

𝑹 𝒆+ ⋅ 𝝉 ̂𝒄𝑹+𝛿𝒆𝑥
+ ̂𝒄†

𝑹 𝒆− ⋅ 𝝉 ̂𝒄𝑹+𝛿𝒆𝑦
+ H.c.)

ℋ𝐶4𝑣
Yuk = 𝜉 ∑

𝑹
𝑠𝑹 ̂𝒄†

𝑹𝒆𝑦 ⋅ 𝝉 ̂𝒄𝑹

ℋ𝐶4𝑣𝜇 = 𝜇 ∑
𝑹

̂𝒄†
𝑹 ̂𝒄𝑹

36 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

In the above, 𝝉 denotes a vector of Pauli matrices that act on the orbital space, 𝒆± = 1√
2 (𝒆𝑥 ± 𝒆𝑦). Further, 𝑹 ∈ 𝐴

denotes the sum of the A sub-lattice, (−1)𝑅𝑥+𝑅𝑦 = 1. Furthermore, we have to consider an arbitrary set of Ising
spins 𝑠𝑹 = ±1. Consider the relation

𝑈†(𝒆, 𝜃)𝝉𝑈(𝒆, 𝜃) = 𝑅(𝒆, 𝜃)𝝉.

𝑈(𝒆, 𝜃) = 𝑒−𝑖𝜃𝒆⋅𝝉/2 is an SU(2) rotation of angle 𝜃 around axis 𝒆 (|𝒆| = 1) and 𝑅(𝒆, 𝜃) an SO(3) with the same
angle and axis. We can hence carry out a canonical transformation,

̂𝑑𝑹 = 𝑈 ̂𝑐𝑹,

that rotates 𝒆+ → 𝒆𝑧, 𝒆− → 𝒆𝑥, and 𝒆𝑦 → − 1√
2 (𝒆𝑥 − 𝒆𝑧) by combing a 𝜋/4 rotation around the z-axis and

subsequently a 𝜋/2 rotation around the x-axis. After this canonical transformation, the Hamiltonian is real, and takes
the form:

ℋ𝐶4𝑣
0 = −𝑡 ∑

𝑹∈𝐴,𝛿=±
(̂𝒅†

𝑹 𝜏𝑧 ̂𝒅𝑹+𝛿𝒆𝑥
+ ̂𝒅†

𝑹 𝜏𝑥 ̂𝒅𝑹+𝛿𝒆𝑦
+ H.c.)

ℋ𝐶4𝑣
Yuk = − 𝜉√

2
∑
𝑹

𝑠𝑹 ̂𝒅†
𝑹 (𝜏𝑥 − 𝜏𝑧) ̂𝒅𝑹

ℋ𝐶4𝑣𝜇 = 𝜇 ∑
𝑹

̂𝒅†
𝑹 ̂𝒅𝑹

We can now express the model in terms of Majorana fermions and choose

̂𝒅†
𝑹 = 1

2 (�̂�𝑹,1 − 𝑖�̂�𝑹,2)

as representation for (−1)𝑅𝑥+𝑅𝑦 = 1 and

̂𝒅†
𝑹 = 1

2 (𝑖�̂�𝑹,1 + �̂�𝑹,2)

as representation for (−1)𝑅𝑥+𝑅𝑦 = −1. Let 𝝁 be a vector of Pauli spin matrices that acts on the Majorana index.
With this choice, the Hamiltonian then takes the form:

ℋ𝐶4𝑣
0 = 𝑖𝑡

2 ∑
𝑹∈𝐴,𝛿=±

(�̂�T
𝑹 𝝉𝑧 �̂�𝑹+𝛿𝒆𝑥

+ �̂�𝑇
𝑹 𝝉𝑥 �̂�𝑹+𝛿𝒆𝑦

)

ℋ𝐶4𝑣
Yuk = 𝜉

4
√

2
∑
𝑹

𝑠𝑹�̂�T
𝑹 (𝝉𝑥𝝁𝑦 − 𝝉𝑧𝝁𝑦) �̂�𝑹

ℋ𝐶4𝑣𝜇 = 𝜇 ∑
𝑹

(2 − �̂�T
𝑹𝜇𝑦�̂�𝑹)

Using the notation of Ref. [67] we define:

̂𝑇 −
1 𝛼�̂�𝑹 (̂𝑇 −

1)−1 = ̄𝛼𝑖𝝉𝑦𝝁𝑥�̂�𝑹

and
̂𝑇 −
2 𝛼�̂�𝑹 (̂𝑇 −

2)−1 = ̄𝛼𝑖𝝉𝑦𝝁𝑧�̂�𝑹

that satisfy
[ℋ𝐶4𝑣 , ̂𝑇 −

1] = [ℋ𝐶4𝑣 , ̂𝑇 −
2] = 0. (2.21)

Both above symmetries square to (-1) and anti-commute with each other. This hence places us in the Kramers class,
see Ref. [67, 70], and no negative sign problem occurs.

2.6. QMC setup 37

Dissertation Jonas Schwab

2.7 QMC Observables

In the following, we define the QMC observables used throughout this project to study the quantum phase transition.
We have used quantities based on both bosonic and fermionic degrees of freedom.

2.7.1 Bosonic degrees of freedom

2.7.1.1 Order parameters

The structure factor 𝑆(𝒌) and susceptibility 𝜒(𝒌) are defined as

𝑆(𝒌) = 1
𝑁2 ∑

⟨𝑹,𝑹′⟩
(⟨𝑠𝑧

𝑹𝑠𝑧
𝑹′⟩ − ⟨𝑠𝑧

𝑹⟩⟨𝑠𝑧
𝑹′⟩) 𝑒𝑖𝒌(𝑹−𝑹′), (2.22)

and

𝜒(𝒌) = ∫d𝜏 1
𝑁2 ∑

⟨𝑹,𝑹′⟩
(⟨𝑠𝑧

𝑹(0)𝑠𝑧
𝑹′(𝜏)⟩ − ⟨𝑠𝑧

𝑹(0)⟩ ⟨𝑠𝑧
𝑹′(𝜏)⟩) 𝑒𝑖𝒌(𝑹−𝑹′). (2.23)

Both 𝑆(𝒌 = 0) and 𝜒(𝒌 = 0) are suitable order parameters to probe the paramagnetic-ferromagnetic phase transi-
tion.

2.7.1.2 RG-invariant quantities

Next, we define a set of renormalization group (RG) invariant observables. These are quantities with vanishing scaling
dimension, that in the thermodynamic limit either converge to 1 if the state is ordered (ferromagnetically, in the case
of this project), or to 0 in the absence of order.
At a quantum critical point, RG-invariant quantities follow the form 𝑓[𝐿𝑧/𝛽, (ℎ − ℎc)𝐿1/𝜈, 𝐿−Δ𝑧, 𝐿−𝜔]. Here, we
have taken into account the possibility of two characteristic length scales: Δ𝑧 = 1 − 𝑧−/𝑧+. Since our temperature
is representative of the ground state, we can neglect the dependence on 𝐿𝑧/𝛽. The term includes two corrections to
scaling, the regular term —governed by an exponent 𝜔— and another correction that is present if 𝑧− ≠ 𝑧+. Up to
these corrections, the data for different lattice sizes cross at the critical field ℎc.
The first RG-invariant quantity is the well-known Binder ratio, 𝐵 [34], defined as

𝐵 = 1
2 (3 − ⟨(𝑠𝑧)4⟩

⟨(𝑠𝑧)2⟩2) . (2.24)

Furthermore, we define two more RG-invariant quantities 𝑅𝑆 and 𝑅𝜒 through the correlation ratio: Given a local
order parameter 𝑂 at momentum 𝒑, one can define the correlation ratio 𝑅𝑂 as

𝑅𝑂 ≡ 1 − 𝑂(𝒑 + 𝛿𝒑)
𝑂(𝒑) with 𝑂 ∈ {𝑆, 𝜒}, (2.25)

where 𝑂(𝒑) is the two-point function of the order parameter in Fourier space, and 𝛿𝒑 is the minimum nonzero
momentum on a finite lattice. For the𝐶2𝑣 model 𝛿𝒑 = (𝜋/𝐿, 𝜋/𝐿) or 𝛿𝒑 = (𝜋/𝐿, −𝜋/𝐿), while for the𝐶4𝑣 model
𝛿𝒑 = (2𝜋/𝐿, 0) or 𝛿𝒑 = (0, 2𝜋/𝐿); as usual, one can average over the two minimum displacements to obtain an
improved estimator. In principle𝑅𝑂 has the same asymptotical behavior for bigger values of 𝛿𝒑, as long as they scale
with 1/𝐿, however, we have found that using the minimal versions works best for us.

38 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

2.7.1.3 Derivative of the free energy

To provide further information on the nature of the transition, we use the derivative of the free energy,

1
𝑁

𝜕𝐹
𝜕ℎ = ⟨ 1

𝑁 ∑
𝑹

𝑠𝑥
𝑹⟩ ≡ 𝑋. (2.26)

2.7.2 Fermionic degrees of freedom

The fermionic observables consist of the momentum-resolved single-particle gap Δsp(𝒌) which we use to image the
meandering of Dirac points. We furthermore use this quantity to determine the Fermi velocity anisotropy 𝑣⟂/𝑣∥.

2.7.2.1 Fermionic single-particle gap

To properly define Δsp(𝒌), we first introduce an energy basis:

ℋ ∣Ψ𝑁
𝑛 (𝒌)⟩ = 𝐸𝑁

𝑛 (𝒌) ∣Ψ𝑁
𝑛 (𝒌)⟩ ,

where ∣Ψ𝑁
𝑛 (𝒌)⟩ are also eigenstates of particle number ̂𝑁 and momentum �̂� operators:

̂𝑁 ∣Ψ𝑁
𝑛 (𝒌)⟩ = 𝑁 ∣Ψ𝑁

𝑛 (𝒌)⟩ �̂� ∣Ψ𝑁
𝑛 (𝒌)⟩ = 𝒌 ∣Ψ𝑁

𝑛 (𝒌)⟩

In this basis, the gap is:

Δsp(𝒌) = 𝐸𝑁0+1
0 (𝒌) − 𝐸𝑁0

0 ,

where 𝑁0 is the particle number of the half-filled system.
Now consider the time-displaced Green function

𝐺(𝒌, 𝜏) = ⟨ ̂𝑐𝒌(𝜏) ̂𝑐†
𝒌⟩ with ̂𝑐𝒌(𝜏) = 𝑒𝜏ℋ ̂𝑐𝒌𝑒−𝜏ℋ.

Assuming a unique ground state, the 𝑇 = 0 Green function reads:

lim
𝛽→∞

𝐺(𝒌, 𝜏) = ⟨Ψ𝑁0
0 ∣ ̂𝑐𝒌(𝜏) ̂𝑐†

𝒌 ∣ Ψ𝑁0
0 ⟩ = ∑

𝑛
𝑒−𝜏(𝐸𝑁0+1

𝑛 (𝒌)−𝐸𝑁0
0) ∣⟨Ψ𝑁0+1

𝑛 (𝒌) ∣ ̂𝑐†
𝒌 ∣ Ψ𝑁0

0 ⟩∣
2

.

Provided that the wave function renormalization, ∣⟨Ψ𝑁0+1
𝑛 (𝒌) ∣ ̂𝑐†

𝒌 ∣ Ψ𝑁0
0 ⟩∣

2
is finite and that |Ψ𝑁0+1

0 (𝒌)⟩ is non-
degenerate, then

lim
𝜏→∞

lim
𝛽→∞

𝐺(𝒌, 𝜏) = 𝑒−𝜏(𝐸𝑁0+1
0 (𝒌)−𝐸𝑁0

0) ∣⟨Ψ𝑁0+1
0 (𝒌) ∣ ̂𝑐†

𝒌 ∣ Ψ𝑁0
0 ⟩∣

2
(2.27)

and we can extract Δsp(𝒌) = 𝐸𝑁0+1
0 (𝒌) − 𝐸𝑁0

0 by fitting the tail of 𝐺(𝒌, 𝜏) to an exponential form.
The source code used for this fit is displayed in Appendix A.4 and Appendix A.2.2.10 demonstrates how to apply the
fitting function.
In Fig. 2.11 we show that this approach works, by comparing the dispersions deep in the disordered and ordered
phases to mean field results. Note that in a fully ergodic QMC simulation we would sample both options for breaking
the Ising ℤ2 symmetry. To produce the results of Figs. 2.11(a2,c2), we have omitted the global move that flips all
the spins and comes with a unit acceptance.
We observe a slight systematic derivation between mean field results and QMC data in the disordered phase. This
stems from fluctuations of the order parameter in the vicinity of the critical point.

2.7. QMC Observables 39

Dissertation Jonas Schwab

0
kx

0k y

(a1)
Meanfield data

0
kx

0k y

(a2)
Monte Carlo data

0
kx

0k y

(a3)
Difference

−0.0025

0.0000

0.0025

0
kx

0k y

(b1)
Meanfield data

0
kx

0k y

(b2)
Monte Carlo data

0
kx

0k y

(b3)
Difference

−0.01

0.00

0.01

0
kx

0k y

(c1)
Meanfield data

0
kx

0k y

(c2)
Monte Carlo data

0
kx

0k y

(c3)
Difference

−0.0050

−0.0025

0.0000

0.0025

0.0050

0
kx

0k y

(d1)
Meanfield data

0
kx

0k y

(d2)
Monte Carlo data

0
kx

0k y

(d3)
Difference

−0.05

0.00

0.05

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
2v

 m
od

el
in

 or
de

re
d p

ha
se

C
2v

 m
od

el
in

 di
so

rd
er

ed
 ph

as
e

C
4v

 m
od

el
in

 or
de

re
d p

ha
se

C
4v

 m
od

el
in

 di
so

rd
er

ed
 ph

as
e

Fig. 2.11: Testing the dispersion of the fermionic single particle gap obtained from QMC data against mean field
results. The first column shows the mean field results according to Eq. (2.13), while the second column shows nu-
merical results obtained by employing Eq. (2.27) and the last column shows mean field minus QMC results. (a) 𝐶2𝑣
model in ordered phase, at ℎ = 1.0. The value of the mean field parameter 𝜙 is set to ⟨𝑠𝑧⟩ from the QMC simulation.
(b) 𝐶2𝑣 model in disordered phase, at ℎ = 5.0. The value of the mean field parameter is set to 𝜙 = 0. (c) Same as
(a), but for the 𝐶4𝑣 model. (d) Same as (b), but for the 𝐶4𝑣 model.

40 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

2.7.2.2 Fermi velocity anisotropy 𝑣⟂/𝑣∥

With Δsp(𝒌) we can extract the anisotropy at the nodal points 𝑲, via,

𝑣⟂
𝑣∥

= lim
𝛿→0

Δsp(𝑲 + 𝛿𝒆⟂) − Δsp(𝑲)
Δsp(𝑲 + 𝛿𝒆∥) − Δsp(𝑲) . (2.28)

Where 𝒆⟂ and 𝒆∥ are unit vectors perpendicular and parallel to the meandering direction of the Dirac cones. We
have considered three different strategies for approaching this limit on the finite size lattices, that are all equivalent in
the thermodynamic limit:
1. The direct approach. The most straightforward implementation of Eq. (2.28) on a finite lattice would be

𝑣⟂
𝑣∥

= Δsp(𝑲 + 𝜹⟂) − Δsp(𝑲)
Δsp(𝑲 + 𝜹∥) − Δsp(𝑲) , (2.29)

where 𝜹⟂, 𝜹∥ are the shortest distances from the nodal point on the finite-size 𝒌-Lattice.
2. Manually setting the finite size gap Δsp(𝑲) = 0. This approach makes sense, since we know that in the
thermodynamic limit the gap vanishes. With this strategy, Eq. (2.28) takes the form

𝑣⟂
𝑣∥

= Δsp(𝑲 + 𝜹⟂)
Δsp(𝑲 + 𝜹∥) . (2.30)

3. Avoid the nodal points. Another approach for avoiding the finite size gap is to measure one step away from it:

𝑣⟂
𝑣∥

= Δsp(𝑲 + 2𝜹⟂) − Δsp(𝑲 + 𝜹⟂)
Δsp(𝑲 + 2𝜹∥) − Δsp(𝑲 + 𝜹∥) (2.31)

The results for these different approaches are shown in Fig. 2.12. The third strategy results in velocity anisotropies
< 1, while Fig. 2.1(c) clearly shows that 𝑣⟂/𝑣∥ > 1 at the critical point. This implies that the approach strongly
underestimates the anisotropy due to the fact that the considered lattices sizes are too small for not measuring directly
at the nodal point.
The other two approaches, while not giving quantitatively the same results, are qualitatively equivalent. We have
opted to use the second strategy, corresponding to Eq. (2.30).

0.0 0.1 0.2
1/L

0

1

2

3

v
/v

 at
 C

rit
. P

oi
nt

(a)
Anisotropy with first strategy

0.0 0.1 0.2
1/L

1.00

1.25

1.50

1.75

v
/v

 at
 C

rit
. P

oi
nt

(b)
Anisotropy with second strategy

0.0 0.1 0.2
1/L

0.8

1.0

1.2

1.4

v
/v

 at
 C

rit
. P

oi
nt

(c)
Anisotropy with third strategy

C2v Model
Power fit for L 8
Log fit for L 12
C4v Model
Power fit for L 8
Log fit for L 12

Fig. 2.12: Fermi velocity anisotropy at the critical point as function of 1/𝐿, determined with (a): Eq. (2.29),
(b): Eq. (2.30), (c): Eq. (2.31). Power law and logarithmic fits are shown, except for (c), where only a logarith-
mic fit is performed.

2.8 QMC results

In this section, we first give an overview of the QMC results, showing that there is indeed a continuous phase transition,
after which we determine the critical exponents and finally discuss odd-even effects found in the 𝐶4𝑣 model.

2.8. QMC results 41

Dissertation Jonas Schwab

2.8.1 Overview

Fig. 2.13 displays the previously defined bosonic observables close to the phase transition. The RG-invariant quantities
defined in Eqs. (2.24) and (2.25) shown in Figs. 2.13(a-c) cross for different system sizes at ℎc ≈ 3.25 (ℎc ≈ 3.65)
for the 𝐶2𝑣 (𝐶4𝑣) model, signifying a phase transition at that point. Both the order parameter 𝑆(𝒌 = 0) (Fig.
2.13(d)) and derivative of the free energy with respect to the tuning parameter, 𝜕𝐹/𝜕ℎ (Fig. 2.13(e)) do not show
any discontinuity, supporting a continuous phase transition.
Due to finite size effects, the RG-invariant quantities do not cross at the same point, but display a drift with system
size. Fig. 2.14(c,d) show the crossing points between 𝐿 and 𝐿 + Δ𝐿 lattices, with Δ𝐿 = 2 (4) for the 𝐶2𝑣 (𝐶4𝑣)
model. As apparent, we obtain consistent results for ℎc when considering different RG-invariant quantities. We
estimate the correlation-length exponents 1/𝜈 by data collapse for the two models in Fig. 2.14(a,b). Considering
values of 𝐿 ≥ 𝐿min = 12 we obtain 1/𝜈 = 1.376(6) [1/𝜈 = 1.38(1)] for the 𝐶2𝑣 [𝐶4𝑣] model. These values are
in the ballpark of the 𝜖-expansion results in the quasiuniversal regime (cf. Appendix A.1). Section 2.8.2 will give
data for various values of 𝐿min, that are standing in agreement with the above values. Although seemingly converged,
the fact that the velocity anisotropy is expected to flow extremely slowly suggest that the exponents are subject to
considerable size effects, see Section 2.5. The impact of critical fluctuations on the fermion spectrum is displayed
in Figs. 2.1(b,c). In the disordered phase, Fig. 2.1(b), the dispersion relation exhibits rotational symmetry around
the Dirac points. On the other hand, at criticality, Fig. 2.1(c), the dispersion relation suggests a velocity anisotropy,
𝑣∥ < 𝑣⟂ at the Dirac point. Figure 2.14(e) demonstrates that this anisotropy grows as a function of system size,
in qualitative agreement with the RG predictions. Although our system sizes are too small to detect convergence or
divergence of the velocity ratio, we find it reassuring that its dependence on system size qualitatively resembles the
scale dependence predicted from the integrated RG flow; cf. Fig. 2.14(e) with Fig. 2.10.

2.8.2 Critical exponents

2.8.2.1 Correlation length exponent 𝜈 from RG invariant quantities.

A renormalization-group invariant quantity, 𝑅, has by definition a vanishing scaling dimension. Consider a system
at temperature 𝛽, of size 𝐿+ × 𝐿− with a single relevant coupling ℎ. Under a renormalization group transformation
that rescales 𝐿+ → 𝐿+/𝑏 with 𝑏 > 1, we expect [71]:

𝑅((ℎ − ℎc), 𝛽, 𝐿+, 𝐿−) = 𝑅((ℎ − ℎc)′, 𝛽/𝑏𝑧, 𝐿+/𝑏, 𝐿−/𝑏1+Δ𝑧). (2.32)

In the above Δ𝑧 ≠ 0 encodes the difference in scaling between the 𝐿+ and 𝐿− directions. Linearization of the RG
transformation, (ℎ − ℎc)′ = 𝑏1/𝜈(ℎ − ℎc) and setting the scale 𝑏 = 𝐿 as well as 𝐿− = 𝐿+ = 𝐿, in accordance to
our simulations, yields:

𝑅 ((ℎ − ℎc), 𝛽, 𝐿) = 𝑓 (𝐿1/𝜈(ℎ − ℎc), 𝐿𝑧/𝛽, 𝐿−Δ𝑧, 𝐿−𝜔) . (2.33)

In the above we have accounted for possible corrections to scaling 𝐿−𝜔. In the presence of a single length scale
Δ𝑧 = 0, such that the generic finite size scaling form is recovered.
Since in our simulations the temperature is representative of the ground state, we can neglect the dependence on
𝐿𝑧/𝛽. Up to corrections to scaling, 𝜔, and the possibility of Δ𝑧 ≠ 0, which would result in another correction to
scaling term, the data for different lattice sizes cross at the critical field ℎc and should collapse when plotted as function
of (ℎ − ℎc)𝐿1/𝜈 . The results for such data collapses are shown in Table 2.1 and Table 2.2 (cf. Appendix A.2.2.8 for
a demonstration on how such a data collapse can be carried out). Furthermore, Fig. 2.15 shows 1/𝜈 for the 𝐶2𝑣 and
𝐶4𝑣 models from pairwise data collapse of RG-invariant quantities, using system sizes 𝐿 and 𝐿 + 2 (𝐿 + 4). Both
suggest a relatively well converged result for 𝐿 ≥ 12. Although seemingly converged, our system sizes are too small
to detect the logarithmic drift in exponents suggested by the RG analysis.

42 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

0.8

0.9

R S

(a1)
C2v model

L = 4
L = 8
L = 12
L = 16
L = 20 0.875

0.900

0.925 (a2)
C4v model

L = 4
L = 8
L = 12
L = 16
L = 20

0.6

0.8

B

(b1)

0.7

0.8

(b2)

0.990

0.995

R

(c1)

0.997

0.998
(c2)

0.2

0.4

S(
k=

0)

(d1)

0.2

0.4
(d2)

3.00 3.25 3.50
Transverse Field h

0.8

0.9

hF
/N

(e1)

3.4 3.6 3.8 4.0
Transverse Field h

0.8

0.9 (e2)

Fig. 2.13: Bosonic observables as function of transverse Ising field ℎ close to the critical point ℎ = ℎc. (a-c) The
RG-invariant quantities: Structure factor correlation ration 𝑅𝑆 , Binder ratio 𝐵 and Susceptibility correlation ratio
𝑅𝜒. The point where lines for different system sizes cross indicates a phase transition. (d) Order parameter 𝑆(𝒌 = 0)
[Eq. (2.22)]. (e) Derivative of free energy, exhibiting no discontinuities.

2.8. QMC results 43

Dissertation Jonas Schwab

2 0 2
0.75

0.80

0.85

0.90

R S
 of

 C
2v

 m
od

el

(a)
1/ = 1.376(6)
hc = 3.2723(1)

L = 4
L = 6
L = 8
L = 10
L = 12
L = 14
L = 16
L = 18
L = 20

2 0 2
(h hc)L 1/

0.86

0.88

0.90

0.92

R S
 of

 C
4v

 m
od

el (b)
1/ = 1.38(1)
hc = 3.6489(1)

L = 4
L = 8
L = 12
L = 16
L = 20

3.2

3.4

h c
 of

 C
2v

 m
od

el

(c)

RS

B
R

3.6

3.8
h c

 of
 C

4v
 m

od
el (d)

RS

B
R

0.0 0.1 0.2
1/L

1.0

1.5

v
/v

 at
 C

rit
. P

oi
nt (e)

C4v

Power
Log

C2v

Power
Log

Fig. 2.14: (a) 𝑅𝑆 as function of (ℎ − ℎc)𝐿1/𝜈 for the 𝐶2𝑣 model, revealing a data collapse for 𝐿 ≳ 12, assuming
1/𝜈 = 1.376. (b) Same as (a), but for 𝐶4𝑣 model, assuming 1/𝜈 = 1.38. (c) Crossing points of different RG-
invariant quantities as function of 1/𝐿 with Δ𝐿 = 2 in 𝐶2𝑣 model, indicating a unique critical point ℎc = 3.27 for
𝐿 → ∞. (d) Same as (c), but for 𝐶4𝑣 model and Δ𝐿 = 4, extrapolating to ℎc = 3.65. (e) Ratio of Fermi velocities
𝑣⟂/𝑣∥ as function of 1/𝐿 at ℎc, revealing that the velocity anisotropy increases with increasing system size. The solid
lines show power law fits for 𝐿 ≥ 8 and logarithmic fits for 𝐿 ≥ 12.

44 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

Table 2.1: Data collapse results for RG-invariant quantities of 𝐶2𝑣 model.
Observables Used system sizes ℎc 1/𝜈 𝜒2

𝑅𝑆 8, 10, 12, 14, 16, 18, 20 3.272715 ± 0.000074 1.358934 ± 0.001824 2.4
𝑅𝑆 10, 12, 14, 16, 18, 20 3.272222 ± 0.000065 1.373499 ± 0.002887 1.8
𝑅𝑆 12, 14, 16, 18, 20 3.272304 ± 0.000099 1.376110 ± 0.006104 1.9
𝑅𝑆 14, 16, 18, 20 3.272617 ± 0.000138 1.375085 ± 0.007038 1.8
𝑅𝑆 16, 18, 20 3.272521 ± 0.000274 1.368184 ± 0.014756 1.9
𝑅𝑆 18, 20 3.273322 ± 0.000449 1.373454 ± 0.022000 1.9
𝐵 8, 10, 12, 14, 16, 18, 20 3.270955 ± 0.000089 1.317011 ± 0.002273 13.4
𝐵 10, 12, 14, 16, 18, 20 3.271532 ± 0.000141 1.344485 ± 0.004371 4.6
𝐵 12, 14, 16, 18, 20 3.272535 ± 0.000175 1.352409 ± 0.006242 3.0
𝐵 14, 16, 18, 20 3.273181 ± 0.000152 1.361056 ± 0.007298 2.6
𝐵 16, 18, 20 3.273783 ± 0.000210 1.370788 ± 0.013022 2.2
𝐵 18, 20 3.274325 ± 0.000464 1.340845 ± 0.028414 1.8
𝑅𝜒 8, 10, 12, 14, 16, 18, 20 3.281138 ± 0.000030 1.421387 ± 0.000002 22.0
𝑅𝜒 10, 12, 14, 16, 18, 20 3.279752 ± 0.000073 1.381046 ± 0.000002 7.3
𝑅𝜒 12, 14, 16, 18, 20 3.275155 ± 0.000500 1.369774 ± 0.001609 5.8
𝑅𝜒 14, 16, 18, 20 3.277021 ± 0.000233 1.338662 ± 0.010808 2.2
𝑅𝜒 16, 18, 20 3.276434 ± 0.000176 1.342788 ± 0.004183 2.2
𝑅𝜒 18, 20 3.275856 ± 0.000693 1.369095 ± 0.034679 2.4

Table 2.2: Data collapse results for RG-invariant quantities of 𝐶4𝑣 model.
Observables Used system sizes ℎc 1/𝜈 𝜒2

𝑅𝑆 8, 12, 16, 20 3.64606 ± 0.00007 1.328 ± 0.006 18.7
𝑅𝑆 12, 16, 20 3.64886 ± 0.00011 1.381 ± 0.011 3.2
𝑅𝑆 16, 20 3.65108 ± 0.00022 1.402 ± 0.023 1.7
𝐵 8, 12, 16, 20 3.64108 ± 0.00009 1.254 ± 0.007 73.2
𝐵 12, 16, 20 3.64818 ± 0.00012 1.340 ± 0.014 5.1
𝐵 16, 20 3.65138 ± 0.00025 1.362 ± 0.026 1.8
𝑅𝜒 8, 12, 16, 20 3.66319 ± 0.00027 1.309 ± 0.018 16.5
𝑅𝜒 12, 16, 20 3.65708 ± 0.00031 1.368 ± 0.028 3.1
𝑅𝜒 16, 20 3.65537 ± 0.00070 1.428 ± 0.092 2.4

0.00 0.05 0.10 0.15 0.20 0.25
1/L

1.2

1.3

1.4

1.5

1/

C2v model

R
RS

B

0.00 0.05 0.10 0.15 0.20 0.25
1/L

1.2

1.4

1/

C4v model

R
RS

B

Fig. 2.15: Critical exponent 1/𝜈 of 𝐶2𝑣 (𝐶4𝑣) model from pairwise data collapse of RG-invariant quantities, using
linear system sizes 𝐿 and 𝐿 + 2 (𝐿 + 4).

2.8. QMC results 45

Dissertation Jonas Schwab

2.8.2.2 Scaling dimensions and scaling anisotropy

Next, we examine the scaling dimension of the bosonic field from the Ising spin correlations:

𝑆(𝒙) = ⟨ ̂𝑠𝑧
R(𝜏) ̂𝑠𝑧

0(0)⟩ (2.34)

where 𝒙 = (𝑹, 𝜏) is a space-time coordinate. The models considered in this research are not Lorentz invariant such
that the scaling dimension acquires a direction dependence. Following Eq. (2.33) we expect:

𝑆 (𝑟 ̂𝒅∗, ℎ) ∝ 1
|𝑟 ̂𝒅∗|2Δ𝑠,∗

𝑓 (𝐿𝑧/𝛽, (ℎ − ℎc)𝐿1/𝜈, 𝐿−Δ𝑧, 𝐿−𝜔) (2.35)

where ̂𝒅∗ defines the direction.

To determine the scaling dimensions, we consider 𝑆(𝐿 ̂𝒅∗, ℎ), for different system sizes 𝐿 and use an RG-invariant
quantity 𝑅 to replace in leading order 𝑓(𝐿𝑧/𝛽, (ℎ − ℎc)𝐿1/𝜈, 𝐿−Δ𝑧, 𝐿−𝜔) = ̃𝑓(𝑅). Using this form, we perform
data collapses using system sizes 𝐿 and 𝐿 + 2 (𝐿 and 𝐿 + 4), where the only free parameter is Δ𝑠,∗. The considered
directions are defined in Table 2.3, the 𝐶4𝑣 symmetry of the second model enforces Δ𝑠,𝑥 = Δ𝑠,𝑦 and Δ𝑠,+ = Δ𝑠,−.
As the results in Fig. 2.16 and Fig. 2.17 show, we cannot resolve a scaling anisotropy between the chosen directions.
We conjecture that anisotropies in the exponents will emerge in the infrared limit. Given the very slow flowwe believe
that our numerical simulations are not in a position to probe these energy scales.

Table 2.3: Considered directions for the scaling dimension.

∗ ̂𝒅∗

𝑥 (̂𝒆𝑥, 0)
𝑦 (̂𝒆𝑦, 0)
+ 1

2 (̂𝒆𝑥 + ̂𝒆𝑦, 0)
− 1

2 (̂𝒆𝑥 − ̂𝒆𝑦, 0)
𝜏 (0, 0.3)

0.00 0.05 0.10 0.15 0.20 0.25
1/L

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Sc
ali

ng
 di

m
en

sio
n

s,
*

(a)

0.00 0.05 0.10 0.15 0.20 0.25
1/L

(b)

s, + , R = B
s, + , R = RS

s, , R = B
s, , R = RS

s, x, R = B

s, x, R = RS

s, y, R = B

s, y, R = RS

s, , R = B
s, , R = RS

Fig. 2.16: Scaling dimension of Ising field of 𝐶2𝑣 model. For (a) 𝜉 = 0.25, (b) 𝜉 = 0.4. Note: Δ𝑠,𝑦, 𝑅 = 𝐵 is
indistinguishable from Δ𝑠,𝑥, 𝑅 = 𝐵 and Δ𝑠,𝑦, 𝑅 = 𝑅𝑆 is identical to Δ𝑠,𝑥, 𝑅 = 𝑅𝑆 .

46 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

0.00 0.05 0.10 0.15 0.20 0.25
1/L

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Sc
ali

ng
 di

m
en

sio
n

s,
*

s, + , R = B
s, + , R = RS

s, x, R = B
s, x, R = RS

s, , R = B
s, , R = RS

Fig. 2.17: Scaling dimension of Ising field of 𝐶4𝑣 model.

2.8.2.3 Dynamical exponent 𝑧

To determine the dynamical exponent of the 𝐶4𝑣 model, we assume isotropic scaling in space, as suggested by the
RG analysis. Then the RG-invariant quantities follow the form

𝑅 = 𝑓(𝐿𝑧/𝛽, (ℎ − ℎc)𝐿1/𝜈, 𝐿−𝜔) (2.36)

at the critical point.
At the crossing points ℎ∗(𝐿), with 𝑅(ℎ∗(𝐿), 𝐿) = 𝑅(ℎ∗(𝐿), 𝐿 + Δ𝐿) and Δ𝐿 = 4, we measure 𝑅(𝛽). Omitting
corrections to scaling leads to 𝑅(𝐿, 𝛽) = 𝑓(𝐿𝑧/𝛽). From this we derive

𝑧 =
log(𝜕𝛽𝑅(𝐿)

𝜕𝛽𝑅(𝐿+Δ𝐿))
log (𝐿+Δ𝐿

𝐿))
. (2.37)

The results are shown in Fig. 2.18, and are consistent with 𝑧 = 1 as suggested in the RG analysis.

0.0 0.1 0.2
1/L

0.9

1.0

1.1

1.2

z

Fig. 2.18: Dynamical exponent 𝑧 of 𝐶4𝑣 model.

2.8. QMC results 47

Dissertation Jonas Schwab

2.8.3 Odd-even effects

The 𝐶4𝑣 model has strong odd-even effects. For linear system sizes 𝐿 ∈ 4ℕ (≡even) and periodic boundary
conditions, the Dirac points are included in the discrete set of 𝒌 vectors. This is not the case for odd lattices,
𝐿 ∈ 4ℕ + 2. Interestingly, the value of the Binder and correlation ratios depend on this choice of the boundary, see
Fig. 2.19(b),(c),(d). We believe that this stems form the fact that both quantities do not have a well defined thermo-
dynamic limit at ℎ = ℎc. i.e. lim𝐿→∞ 𝑅𝑂(ℎ = ℎc) is mathematically not defined. However, the free energy (Fig.
2.19(a)), the critical field (Fig. 2.20(a)) and the exponents (Figs. 2.20(b-d)), should ultimately converge to the same
value. On odd lattices, finite size effects seem to be larger.
The critical exponents 2𝛽/𝜈 and 𝜂 in Figs. 2.20(c,d), stem from the scaling assumptions

𝑆(𝒌 = 0, ℎ = ℎc, 𝐿) ∝ 𝐿2𝛽/𝜈 𝜒(𝒌 = 0, ℎ = ℎc, 𝐿) ∝ 𝐿2−𝜂𝜙 , (2.38)

where we omitted, as before, the dependence on the inverse temperature 𝛽 and on corrections to scaling. Replacing
ℎc by the crossing point ℎ∗(𝐿) of an RG-invariant quantity 𝑅, meaning 𝑅(ℎ∗(𝐿), 𝐿) = 𝑅(ℎ∗(𝐿), 𝐿 + 4) with
𝑅 ∈ {𝑅𝑆, 𝑅𝜒, 𝐵}, we obtain:

2𝛽/𝜈 = log(𝑆(𝒌 = 0, 𝐿 + 4, ℎ = ℎ∗(𝐿)
𝑆(𝒌 = 0, 𝐿, ℎ = ℎ∗(𝐿)) / log(𝐿 + 4

𝐿) , (2.39)

and

𝜂𝜙 = 2 − log(𝜒(𝒌 = 0, 𝐿 + 4, ℎ = ℎ∗(𝐿)
𝜒(𝒌 = 0, 𝐿, ℎ = ℎ∗(𝐿)) / log(𝐿 + 4

𝐿) . (2.40)

As apparent in Fig. 2.20, ℎc has the smallest corrections to scaling when determined from 𝑅𝑆 . However, the smallest
corrections to scaling are when determining the critical exponents 2𝛽/𝜈, 𝜂𝜙 and 𝑧, are obtained by using ℎc as
determined from 𝑅𝜒. Finally, the velocity anisotropy at the critical point grows in both cases, but is much smaller
for odd system sizes, cf. Fig. 2.21.

L = 4
L = 6
L = 8
L = 10
L = 12
L = 14
L = 16
L = 18
L = 20

3.4 3.6 3.8 4.0
h

0.75

0.80

0.85

0.90

X
=

hF
/N

(a)

3.4 3.6 3.8 4.0
h

0.2

0.4

0.6

0.8

Bi
nd

er
 ra

tio
 B

(b)

3.4 3.6 3.8 4.0
h

0.5

0.6

0.7

0.8

0.9

Co
rre

lat
io

n r
ati

o R

(c)

3.4 3.6 3.8 4.0
h

0.80

0.85

0.90

0.95

1.00

Su
sc

ep
tib

ili
ty

 ra
tio

 R

(d)

3.5 4.0

0.997
0.998

Fig. 2.19: Derivative of free energy and three RG-invariant quantities, showing a continuous transition around ℎ ≈
3.65. Notable is an odd-even effect between linear system sizes 𝐿 ∈ 4ℕ (=even) and 𝐿 ∈ 4ℕ + 2 (=odd).

48 Chapter 2. Nematic quantum criticality in Dirac systems

Dissertation Jonas Schwab

even RS

even B
evenR
odd RS

odd B
odd R

0.00 0.05 0.10 0.15 0.20 0.25
1/L

3.5

3.6

3.7

3.8
h c

(a)

0.00 0.05 0.10 0.15 0.20 0.25
1/L

1.2

1.4

1.6

1.8

1/

(b)

0.00 0.05 0.10 0.15 0.20 0.25
1/L

0.9

1.0

1.1

1.2

1.3

2
/

(c)

0.00 0.05 0.10 0.15 0.20 0.25
1/L

0.4

0.2

0.0

0.2
(d)

Fig. 2.20: Demonstration of odd-even effects for the 𝐶4𝑣 model. (a): Critical field ℎc, extracted from the three
RG-invariant quantities as determined by the crossing points between linear system sizes 𝐿 and 𝐿 + 4. Odd and
even system sizes show different behavior. Even system size shows better convergence. (b): Critical exponent 1/𝜈 as
determined by data collapse of the three RG-invariant quantities, correlation ratio𝑅, Binder ratio𝐵 and susceptibility
ratio 𝑅𝜒, for linear system sizes 𝐿 and 𝐿 + 4. Odd and even system sizes show different behavior. Even system size
shows better convergence. (c): Critical exponent 2𝛽/𝜈 as determined with Eq. (2.39). (d): Critical exponent 𝜂𝜙 as
determined with Eq. (2.40).

0.0 0.1 0.2
1/L

1.2

1.3

1.4

1.5

1.6

v
/v

Even system sizes
Odd system sizes

Fig. 2.21: Odd-even effects for the 𝐶4𝑣 model on the anisotropy velocity of Dirac cones at the critical point.

2.8. QMC results 49

Dissertation Jonas Schwab

2.9 Summary

Both the 𝜖-expansion analysis and theQMC simulations show that our two symmetry distinct models of Dirac fermions
support continuous nematic transitions. In both cases, the key feature of the quantum critical point is a velocity
anisotropy that is best seen in the QMC data of Fig. 2.1(c). For the 𝐶4𝑣 model, the 𝜖-expansion shows that it diverges
logarithmically with system size, in agreement with previous large-𝑁 results [52]. This law is supported by finite-
size analysis based on QMC data up to linear system size 𝐿 = 20, which is close to the upper bound allowed by
current computational approaches. Since the effective exponents flow with the velocity anisotropy, we foresee that
lattice sizes beyond the reach of our numerical approach and experiments at ultralow temperatures will be required to
obtain converged values. The QMC data captures a quasiuniversal regime [65, 66], in which irrelevant operators aside
from the velocity anisotropy die out. In fact, the RG prediction for exponents in this intermediate-energy regime is
roughly consistent with the finite-size QMC measurements, Fig. A2(c). Furthermore, for a reasonable set of starting
values, the integrated RG flows of the two models are initially very similar and deviate from each other only at very
low energy scales. A similar behavior of the two models is also observed in the QMC data.
An advantage of our models is that the Dirac points are pinned by symmetry, such that QMC approaches that take
momentum-space patches around these points into account [72] represent an attractive direction for future work.
Our models equally allow for large-𝑁 generalizations, such that QMC and analytical large-𝑁 calculations can be
compared as a function of increasing 𝑁 . Finally, we can make contact to nematic transitions in (2 + 1)-dimensional
Fermi liquids [48, 49], since our models do not suffer from the negative-sign problem under doping.

50 Chapter 2. Nematic quantum criticality in Dirac systems

CHAPTER

THREE

PHASE DIAGRAM OF THE SU(𝑁) ANTIFERROMAGNET OF SPIN
𝑆 ON A SQUARE LATTICE

The results presented in this chapter are the outcome from a collaboration with Francesco Parisen Toldin and Fakher
F. Assaad. These findings have been published in [17], with significant portions reproduced here verbatim. My
contribution to the project comprise the quantum Monte Carlo (QMC) calculations, including the implementation
of the model in code. The QMC model has been designed by F. F. A., while the group-theoretical proof for the
projections has been executed by F. P. T.. The interpretation of data and written text is a combined work of all
authors.

3.1 Introduction

Spin systems are ubiquitous in nature and form one of the most fundamental concept in condensed matter and statis-
tical physics. Their complex collective behavior has spurred numerous experimental and theoretical studies, aimed
at understanding their nature and properties. At the same time, modeling of spin systems represents a primary theo-
retical laboratory to investigate fundamental physics. Starting with the classical Ising model [33], spin systems have
played an crucial role in our understanding of phase transitions [37], phases of matter, frustration and disorder [73],
emergent gauge theories [74, 75] and exotic critical behavior [76]. The impact of spin models extends beyond the
realm of condensed matter physics, and has found application in other areas, such as information processing [77] and
quantum computing [78], where the fundamental unit of information, a qubit, is a single spin-1/2 system.
In condensed matter, spin systems are realized in Mott insulators, which arise when charge fluctuations in a given unit
cell are suppressed. For instance, in undoped cuprates the copper atom is in a Cu2+ state and corresponds to a net
spin 𝑆 = 1/2 degree of freedom. Super-exchange leads to an 𝑆 = 1/2, SU(2) Heisenberg spin model that has been
studied numerically [79, 80] and experimentally [81] at length. Higher spin SU(2) systems arise when 2𝑆 electrons
are localized on a single orbital and a strong Hund’s rule favors a maximal spin state with a totally symmetric wave
function. For example, in the Haldane chain realized by the CsNiCl3 compound Ni2+ ions carry spin 1 [82]. SU(𝑁)-
invariant models, for 𝑁 > 2, naturally arise as special cases of the Kugel-Khomski model [83, 84], where spin and
orbital degrees of freedom turn out to play a very symmetric role. In particular, the observed spin-orbital liquid
behavior in Ba3CuSb2O9 [85] has been interpreted in terms of an SU(4) quantum antiferromagnet in the defining
representation [86]. Beyond the solid state physics, SU(𝑁) spin models can be realized in the realm of cold atomic
gases [87, 88].
Topology plays a decisive role in the understanding of SU(2) invariant spin systems. In fact, using a spin coherent-
state path integral approach to antiferromagnetic (AFM) Heisenberg chains, one identifies a Berry phase. It corre-
sponds to the skyrmion count of the three-components normalized order parameter in 1+1 dimensions and at angle
𝜃 = 2𝜋𝑆 [89]. This provides a topological understanding of the observed differences between half-integer and in-
teger spin chains. In two spatial dimensions, topology enters through singular skyrmion number changing events in
space time: monopoles [90]. For a square lattice with 𝐶4 symmetry, only quadrupole (double) monopole events are
allowed for half-integer (odd) spin by symmetry. There is no constraint on the monopole number for even values of
the spin. For the plain vanilla SU(2) Heisenberg model at arbitrary spin 𝑆, the spin-wave approximation captures
well the ground state and topological excitations lie high in the spectrum. In this context, the theory of deconfined
quantum criticality essentially poses the question of the nature of the quantum phase transition that emanates when
one decreases the energy of monopoles and ultimately condenses them [76]. For half-integer spin systems, where
only quadrupole monopole insertions are allowed, one can conjecture that the Hilbert space splits into four orthog-
onal subspaces characterized by the number of monopoles modulo four. This provides an understanding of how

51

Dissertation Jonas Schwab

1/2 1 3/2 2
S

2
4
6
8

10
12
14
16
18
20
22

N

(d)

VBS (a)

Haldane Nematic (c)
VBS (b)

VBS (d)
VBS

Néel

AKLT (e)
AKLT
AKLT

(a)

(c)

(b)

(e)

0.0 0.5 1.0

Dimer strength (a. u.)

(VBS)
(VBS)

Fig. 3.1: Ground-state phase diagram of the SU(𝑁)-antiferromagnet model (3.1) on the square lattice, as obtained
from QMC simulations. 𝑆 identifies the chosen representation of the 𝔰𝔲(𝑁) algebra of SU(𝑁), illustrated by the
Young tableau in Fig. 3.2. Striped regions indicate the part of the phase diagram where current QMC data do not
allow an unambiguous identification of the phase; in such cases we indicate between parenthesis the most likely
identified order. The insets show QMC data in the highlighted dimerized phases, obtained through a pinning-field
approach (see Sec. 3.4.1).

Fig. 3.2: Young tableau corresponding to the irreducible representation of 𝔰𝔲(𝑁) considered here; 𝑁 is even and 𝑆
can take half-integer and integer values.

52 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

the fourfold degenerate valence bond solid (VBS) state emerges for condensing topological excitations of the quan-
tum antiferromagnet [91]. Similarly, for spin-1 (spin-2) systems, condensing monopoles should generate a twofold
(zerofold) degenerate disordered state.
A crucial question is how to control the monopole energy. The seminal work of Read and Sachdev [18, 20, 21]
shows that the discussion above can be carried over to SU(𝑁) spin systems, 𝑁 ≥ 2. Furthermore, enhancing 𝑁
has the potential of lowering the monopole energy. In this work, we show that it is possible to formulate negative
sign-free auxiliary-field (AF) quantumMonte Carlo (QMC) simulations [8, 9, 10, 12, 92] of the SU(𝑁) AFM spin-𝑆
Heisenberg model, for representations given by a Young tableau with 𝑁/2 rows and 2𝑆 columns. This generalizes
the work of Ref. [93] to generic values of 𝑆. Specifically, we consider the model:

�̂� = 𝐽 ∑
⟨𝑖,𝑗⟩,𝑎

̂𝑆(𝑎)
𝑖 ̂𝑆(𝑎)

𝑗 , (3.1)

where the sum extends over the pair of nearest-neighbor sites ⟨𝑖, 𝑗⟩, and 𝑎 runs over 𝑁2 − 1 generators of the said
representation of the 𝔰𝔲(𝑁) algebra of SU(𝑁). The main result of this work is the rich phase diagram illustrated in
Fig. 3.1. Remarkably, and for each considered value of 𝑆 = 1/2, 1, 3/2, 2 just above the threshold value of 𝑁 above
which Néel order disappears, we observe four-, two- and zerofold degenerate disordered states at half-integer, odd
and even values of 𝑆.
This chapter is organized as follows. In Sec. 3.2 we discuss how we construct the Hamiltonian (3.1), with the spin op-
erators in the desired representation of Fig. 3.2. In Sec. 3.3 we illustrate its actual implementation within a fermionic
representation, which can be sampled by means of QMC simulations in the AF approach. In Sec. 3.4 we present and
discuss our QMC results for the phase diagram of the model. In Sec. 3.5 we summarize our findings. In Appendix
B.1 we discuss a formula giving the eigenvalue of the quadratic Casimir operator of a representation in terms of its
Young tableau. In Appendix B.2we prove an upper bound on the eigenvalue of the Casimir operator of the irreducible
representations emerging from a tensor product of representations discussed in Sec. 3.2. In Appendix B.3 we discuss
the systematic error in the QMC formulation, arising from the Trotter discretization. In Appendix B.4 we prove a
lower and upper bound for a bond observable used to diagnose the phases.

3.2 General formulation of the Hamiltonian

In the Hamiltonian (3.1), the operators 𝑆(𝑎)
𝑖 form an irreducible representation of the 𝔰𝔲(𝑁) algebra. This is uniquely

specified by its maximum Dynkin weight Λ𝛼 or, alternatively, by a Young tableau, from which the components Λ𝛼𝑘
can be read off as [94]

Λ𝛼𝑘
= 𝑙𝑘 − 𝑙𝑘+1, 𝑘 = 1, … , 𝑁 − 1, (3.2)

where 𝑙𝑘 is the length of the 𝑘-th row of the Young tableau, and one can assume 𝑙𝑁 = 0 for representations of 𝔰𝔲(𝑁).
Here we consider, on each lattice site, the representation corresponding to a Young tableau illustrated in Fig. 3.2,
whose corresponding maximum Dynkin weight is

Λ𝛼𝑘
= 2𝑆𝛿𝑘,𝑁/2. (3.3)

The dimension of an irreducible representation can be computed with the hook-length formula, or with Weyl’s for-
mula [94]:

dim =
𝑁

∏
𝑖<𝑗

𝑙𝑖 − 𝑙𝑗 + 𝑗 − 𝑖
𝑗 − 𝑖 . (3.4)

For the present case, we have

dim =
𝑁/2−1
∏
𝑗=0

(2𝑆 + 𝑁
2 + 𝑗)!𝑗!

(2𝑆 + 𝑗)! (𝑁
2 + 𝑗)! .

(3.5)

To realize this representation, we first introduce on each lattice site 2𝑆 independent irreducible representations. Their
tensor product decomposes into different irreducible representations, including, in particular, the one of Fig. 3.2. In a

3.2. General formulation of the Hamiltonian 53

Dissertation Jonas Schwab

second step we project the Hilbert space onto that of the desired representation by maximizing the quadratic Casimir
operator.
Let {𝑇𝑎}, 𝑎 = 1, … , 𝑁2 − 1 be a basis of the 𝔰𝔲(𝑁) algebra. We start by introducing on each lattice site 𝑖 the
antisymmetric self-adjoint representation 𝑇𝑎 → Γ(𝑇𝑎) = ̂𝑇𝑎,𝑖. Its maximum weight in the Dynkin representation is

Λ𝛼𝑘
= 𝛿𝑘,𝑁/2, (3.6)

which matches Eq. (3.3) for 𝑆 = 1/2. Equivalently, in agreement with Eq. (3.2), this representation corresponds to
a Young tableau with one column and 𝑁/2 boxes.

... = ...

Fig. 3.3: Decomposition of the tensor product of 2𝑆 antisymmetric self-adjoint representations, whose maximum
Dynkin weight is given in Eq. (3.6), into irreducible ones.

Next, we consider, for each lattice site 𝑖, 2𝑆 independent representations ̂𝑇𝑎,𝑖,𝛼, 𝛼 = 1 … 2𝑆. We refer to 𝛼 as the
flavor index. The composite generators, i.e., the generators for the tensor product of the 2𝑆 representations, define
the spin operators appearing in Eq. (3.1) and are given by

̂𝑆(𝑎)
𝑖 =

2𝑆
∑
𝛼=1

̂𝑇𝑎,𝑖,𝛼, (3.7)

Using Eq. (3.7), the interaction term in Eq. (3.1) is written as1

�̂�𝐽 = 𝐽 ∑
⟨𝑖 𝑗⟩

𝑁2−1
∑
𝑎=1

̂𝑆(𝑎)
𝑖 ̂𝑆(𝑎)

𝑗

= 𝐽 ∑
⟨𝑖 𝑗⟩

𝑁2−1
∑
𝑎=1

2𝑆
∑

𝛼,𝛽=1
̂𝑇𝑎,𝑖,𝛼 ̂𝑇𝑎,𝑗,𝛽.

(3.8)

The operators ̂𝑆(𝑎)
𝑖 in Eq. (3.7) form a reducible representation of 𝔰𝔲(𝑁), which decomposes into several irreducible

representations, illustrated in Fig. 3.3. As proven in App. B.2, among the resulting representations, the one of Fig.
3.2 exhibits the maximum eigenvalue of the quadratic Casimir operator. To explicitly compute it, we choose a basis
{𝑇𝑎} of 𝔰𝔲(𝑁) such that

Tr{𝑇𝑎𝑇𝑏} = 1
2𝛿𝑎𝑏. (3.9)

With this choice, the structure constants of the algebra are completely antisymmetric and the chosen basis is, up to
a trivial normalization, self-dual with respect to the bilinear form (3.9). Thus, given an irreducible representation
Γ ∶ 𝔰𝔲(𝑁) → 𝐺𝐿(𝑑, ℂ), we define the quadratic Casimir operator as

̂𝐶2 = ∑
𝑎

Γ(𝑇𝑎)Γ(𝑇𝑎) ≡ 𝐶𝟙𝑑, (3.10)

where we have used the fact that 𝐶2 ∝ 𝟙𝑑 (Schur’s Lemma) to introduce the eigenvalue of the Casimir operator 𝐶2.
1 In Eq. (3.1) and Eq. (3.8) we have implicitly assumed a choice of the basis of 𝔰𝔲(𝑁), such that the interaction term is SU(𝑁)-invariant.

This condition is satisfied by the basis choice given below in Eq. (3.9).
2 We notice that the operator defined in Eq. (3.10) commutes with the algebra only for completely antisymmetric structure constants. For a

general choice of the base, one needs to introduce a metric tensor 𝑔𝑎𝑏 determined by the structure constants and the Casimir operator is defined as
∑𝑎𝑏 𝑔𝑎𝑏Γ(𝑇𝑎)Γ(𝑇𝑏) [94]; for completely antisymmetric structure constants 𝑔𝑎𝑏 ∝ 𝛿𝑎𝑏. Also, for the same reason, a normalization is implicit
in the definition of Eq. (3.10), discussed in App. E.1.

54 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

Using Eq. (3.7) in Eq. (3.10), the quadratic Casimir operator on the lattice site 𝑖 is

̂𝐶2,Γ𝑖
=

𝑁2−1
∑
𝑎=1

2𝑆
∑

𝛼,𝛽=1
̂𝑇𝑎,𝑖,𝛼 ̂𝑇𝑎,𝑖,𝛽 (3.11)

In order to project the Hilbert space to the subspace of the desired representation, we introduce on each site a term
in the Hamiltonian which favors the states with the highest Casimir value

�̂�Casimir = −𝐽𝐻 ∑
𝑖

̂𝐶2,Γ𝑖

= −𝐽𝐻 ∑
𝑖

𝑁2−1
∑
𝑎=1

2𝑆
∑

𝛼,𝛽=1
̂𝑇𝑎,𝑖,𝛼 ̂𝑇𝑎,𝑖,𝛽,

(3.12)

with 𝐽𝐻 > 0. The term of Eq. (3.12) effectively introduces a ferromagnetic interaction between different flavors,
with coupling strength 𝐽𝐻 .
The Hamiltonian that we will solve numerically, reads:

�̂� = �̂�𝐽 + �̂�Casimir. (3.13)

Importantly, [�̂�𝐽 , �̂�Casimir] = 0, such that the projection onto the desired irreducible representation turns out to be
very efficient. And since the projection is a local onsite term, we expect it to scale independent from system size.

3.3 QMC formulation

3.3.1 Fermionic representation

As discussed in Sec. 3.2, the Hamiltonian is constructed using as basic building blocks antisymmetric self-adjoint
representations, defined by the maximum weight of Eq. (3.6) or, equivalently, by a Young tableau with one column
and 𝑁/2 boxes. The corresponding operators ̂𝑇𝑎,𝑖,𝛼 entering in Eqs. (3.8) and (3.12) can be realized by introducing,
for every lattice site 𝑖 and for every flavor index𝛼,𝑁 nonrelativistic fermions, with creation and annihilation operators

̂𝑐†
𝑖,𝛼,𝜎, ̂𝑐𝑖,𝛼,𝜎, 𝜎 = 1 … 𝑁 , and fixing the total charge (i.e., the number of fermions) to half-filling, i.e., to 𝑁/2. For
every 𝑖 and 𝛼, a basis of this Hilbert space is generated by the states

(̂𝑐†
𝑖,𝛼,1)

𝑛𝑖,𝛼,1 ⋯ (̂𝑐†
𝑖,𝛼,𝑁)

𝑛𝑖,𝛼,𝑁 |0⟩, 𝑛𝑖,𝛼,𝜎 = 0, 1, (3.14)

with the constraint
𝑁

∑
𝜎=1

𝑛𝑖,𝛼,𝜎 = 𝑁
2 , ∀𝑖, 𝛼. (3.15)

In this space, the (representation of the) 𝔰𝔲(𝑁) generators are

̂𝑇𝑎,𝑖,𝛼 = ∑
𝜎,𝜎′

̂𝑐†
𝑖,𝛼,𝜎(𝑇𝑎)𝜎𝜎′ ̂𝑐𝑖,𝛼,𝜎′ . (3.16)

It is easy to check that the maximum weight in the Dynkin representation agrees with Eq. (3.6), thus providing us the
needed building block to simulate the Hamiltonian (3.1).
We study the model by means of finite-temperature AF QMC [8, 9, 10] and projective AF QMC [10, 92, 95].
In this framework, we sample respectively the grand canonical and canonical ensembles at half-filling, and charge
fluctuations are generally present. Therefore, we need to additionally impose the constraint of Eq. (3.15). Notice
that, unlike available techniques for canonical QMC simulations [96, 97], where the global charge of the system is
fixed, here we need to impose half-filling on each lattice site. To this end, we add a repulsive Hubbard 𝑈 -term on
each site 𝑖 and flavor 𝛼:

�̂�𝑈 = 𝑈 ∑
𝑖

2𝑆
∑
𝛼=1

(�̂�𝑖,𝛼 − 𝑁
2)

2
, �̂�𝑖,𝛼 ≡

𝑁
∑
𝜎=1

̂𝑐†
𝑖,𝛼,𝜎 ̂𝑐𝑖,𝛼,𝜎. (3.17)

3.3. QMC formulation 55

Dissertation Jonas Schwab

Fig. 3.4: Sketch of the structure of the QMC Hamiltonian for 2𝑆 = 2. �̂�𝑈 : Hubbard term for freezing out charge
degrees of freedom. �̂�Casimir: Term for maximizing the eigenvalue of the Casimir operator. �̂�𝐽 : Antiferromagnetic
interaction between elemental spins.

In summary, the Hamiltonian simulated with the AF QMC method is the sum of the interaction term given in
Eq. (3.8), the Casimir term [Eq. (3.12)], and the Hubbard term [Eq. (3.17)], with the operators { ̂𝑇𝑎,𝑖,𝛼} given
in Eq. (3.16). Eqs. (3.8) and (3.12) can be further simplified using the following summation identity [98]

𝑁2−1
∑
𝑎=1

(𝑇𝑎)𝜎𝜎′(𝑇𝑎)𝜖𝜖′ = 1
2 (𝛿𝜎𝜖′𝛿𝜎′𝜖 − 1

𝑁 𝛿𝜎𝜎′𝛿𝜖𝜖′) , (3.18)

which holds for a choice of generators that satisfies Eq. (3.9). Using Eq. (3.18) and collecting the terms in Eqs. (3.8),
(3.12) and (3.17), the QMC Hamiltonian is

�̂�QMC =�̂�𝐽 + �̂�Casimir + �̂�𝑈

= − 𝐽
4 ∑

⟨𝑖,𝑗⟩,𝛼,𝛽
{�̂�(𝑖,𝛼),(𝑗,𝛽), �̂�†

(𝑖,𝛼),(𝑗,𝛽)}

+ 𝐽𝐻
2 ∑

𝑖
∑
𝛼>𝛽

{�̂�(𝑖,𝛼),(𝑖,𝛽), �̂�†
(𝑖,𝛼),(𝑖,𝛽)}

+ 𝑈 ∑
𝑖,𝛼

(�̂�𝑖,𝛼 − 𝑁
2)

2
,

(3.19)

where

�̂�(𝑖,𝛼),(𝑗,𝛽) ≡ ∑
𝜎

̂𝑐†
𝑖,𝛼,𝜎 ̂𝑐𝑗,𝛽,𝜎, (3.20)

{ ̂𝐴, �̂�} ≡ ̂𝐴�̂� + �̂� ̂𝐴, and �̂�𝑖,𝛼 as defined in Eq. (3.17). The Hamiltonian now takes the form of the Heisenberg
model considered in Ref. [93] and the proof for the absence of sign problem is similar. In Fig. 3.4 we sketch the
resulting interactions for the case 𝑆 = 1.
Before proceeding, we would like to comment on the computational cost of the AF QMC algorithm [10] for this
model. The total number of orbitals is given by 𝐿22𝑆 such that matrix operations required to compute, e.g., the
single-particle spectral function, scales as (𝐿22𝑆)3𝛽, where 𝛽 is the inverse temperature. It turns out, that, in contrast
to the generic Hubbard model with 𝐿22𝑆 sites, this is not the leading computational cost. The number of Hubbard-
Stratonovich fields per imaginary time slice scales as 𝐿2𝑆2. Using fast updates, refreshing one field involves (𝐿22𝑆)2

floating point operations, such that the total cost of the updating scales as 𝐿6𝑆4𝛽. Hence large values of 𝑆 are
computationally expensive. In Appendix B.3, we show that the computational cost does not explicitly scale with 𝑁 .
We note that this estimate of the computational cost does not take into account auto-correlation times.

56 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

3.3.2 Test of projections

As discussed above, the Hamiltonian (3.19) is equivalent to Eq. (3.1) in the limit 𝐽𝐻 → ∞, and 𝑈 → ∞, under
which the Hilbert space is projected to the representation of Fig. 3.2. To optimally test the projections, we use the
finite-temperature AF QMC method, which evaluates ⟨�̂�⟩ = Tr [𝑒−𝛽�̂��̂�] /Tr [𝑒−𝛽�̂�], where the trace runs over
the grand canonical ensemble.
The interaction term of Eq. (3.8) and the Casimir term of Eq. (3.12) manifestly conserve the charge on each lattice
site 𝑖. Hence, in the Gibbs density matrix exp(−𝛽�̂�), the Hubbard term factorizes out, resulting in an effective
exponential suppression of the charge fluctuations,

⟨(�̂�𝑖,𝛼 − 𝑁/2)2⟩ ∝ 𝑒−𝛽𝑈 , (3.21)

independent from system size. The suppression of charge fluctuations is therefore particularly efficient. This is
illustrated in Fig. 3.5, where we show ⟨(�̂�𝑖,1 − 𝑁/2)2⟩ in a semilogarithmic scale for 𝑁 = 2 and 𝑆 = 1/2 and as a
function of 𝛽𝑈 . Besides the case of a Hamiltonian containing the Hubbard interaction [Eq. (3.17)] only, for which
any observable depends only on 𝛽𝑈 , we consider the presence of the AFM interaction Eq. (3.8) for a lattice of linear
size 𝐿 = 4. In the latter case, there is an additional dependence on the inverse temperature 𝛽, which we illustrate
by considering four values. In line with Eq. (3.21), we observe an exponential suppression of the charge fluctuations
as a function of 𝛽𝑈 . Interestingly, in the interacting case, ⟨(�̂�𝑖,1 − 𝑁/2)2⟩ decreases with the temperature for any
given value of 𝛽𝑈 , even for 𝑈 = 0. This implies that the AFM coupling itself suppresses the charge fluctuations.

0 1 2 3 4
U

10 3

10 2

10 1

100

(n
N

/2
)2

Bare Hubbard interaction
Asymptotic behavior

= 1.0
= 2.0
= 3.0
= 4.0

Fig. 3.5: Suppression of the charge fluctuations ⟨(�̂�𝑖,1 − 𝑁/2)2⟩ as a function of 𝛽𝑈 , for 𝑁 = 2 and 𝑆 = 1/2.
We consider a Hamiltonian containing the Hubbard term only and the case of a model with an antiferromagnetic
interaction [Eq. (3.8)], with coupling constant 𝐽 = 1 on a system size 𝐿 = 4, and for different inverse temperatures
𝛽. The charge fluctuations fall off asymptotically as exp(−𝛽𝑈) [Eq. (3.21)].

In Appendix B.1, we discuss a formula that gives the value of the Casimir eigenvalue in terms of the Young tableau
of the representation [99]. Employing this result, in App. E.2 we determine, for the representation of Fig. 3.2:

𝐶(𝑁, 𝑆) = 𝑁𝑆(2𝑆 + 𝑁)
4 . (3.22)

Furthermore, in Appendix B.2, we prove that Eq. (3.22) is the maximum Casimir eigenvalue among the irreducible
representations arising from the tensor product of 2𝑆 self-adjoint antisymmetric representations given in Eq. (3.16),
and that there is a finite gap 𝑂(1) in the eigenvalues of the quadratic Casimir operators between the maximally sym-
metric representation of Fig. 3.2 and the other irreducible representations arising from the tensor product. Therefore,
the term of Eq. (3.12) effectively selects a single representation, and the projection is efficient.
To control the projection, we compute the expectation value of the quadratic Casimir operator from the QMC sim-
ulations and compare it with the expected result of Eq. (3.22). An example of such a projection is shown in Fig.
3.6. In Fig. 3.6(a), we plot the difference between the computed and expected Casimir eigenvalue 𝐶, as a function
of 𝛽𝐽𝐻 , for different inverse temperatures and in a semilogarithmic scale. The deviation from the expected result
is exponentially suppressed in 𝛽𝐽𝐻 , underscoring the effectiveness of the projection. In Fig. 3.6(b), we show, as a
function of 𝑁 , the sampled value of 𝐶 along with the expected result, and in the inset we plot their difference, which
vanishes within error bars.

3.3. QMC formulation 57

Dissertation Jonas Schwab

0 1 2 3 4
JH

10 3

10 2

10 1

C
(N

=
2,

S=
1)

C
(a)

= 1
= 2
= 3
= 4

2 4 6 8 10 12 14 16 18 20
N

0

20

40

60

80

100

C

(b)

2 10 20
N

0.0000
0.0025

C
(N

,S
)

C

Analytical value
Measured result

Fig. 3.6: Demonstrating the effectiveness of projection onto the fully symmetric representation for 𝑆 = 1 by compar-
ing the Casimir eigenvalue 𝐶(𝑁, 𝑆) [Eq. (3.22)] to the sampled one ⟨ ̂𝐶⟩. (a) Difference between 𝐶(𝑁 = 2, 𝑆 = 1)
of the representation 𝑆 = 1, 𝑁 = 2, and ⟨ ̂𝐶⟩, as a function of the effective interaction strength 𝛽𝐽𝐻 [Eq. (3.12)]
with 𝐽 = 0, and for four inverse temperatures. Data shown are obtained for a lattice of size 𝐿 = 4, with a Hubbard
interaction 𝛽𝑈 = 6 [Eq. (3.17)], vanishing nearest-neighbor antiferromagnetic interaction 𝐽 = 0, and a Trotter
discretization Δ𝜏 = 0.1. (b) Casimir eigenvalue as a function of 𝑁 . We compare the predicted value of Eq. (3.22)
with the sampled Casimir eigenvalue from QMC simulations of a lattice with size 𝐿 = 4, with a Hubbard interaction
𝑈 = 2 [Eq. (3.17)], antiferromagnetic coupling 𝐽 = 1 [Eq. (3.1)], projection strength 𝐽𝐻 = 1 [Eq. (3.12)], and a
Trotter discretization Δ𝜏 = 0.1. In the inset we plot the difference between the sampled and expected value.

3.4 Results

3.4.1 Order parameters and phases

We have simulated the Hamiltonian Eq. (3.19) using the ALF package [11, 12], which provides a comprehensive
library to program QMC simulations of interacting models of fermions, using the AF algorithm [8, 9, 10]. In partic-
ular, we used the projective formulation of the algorithm, which projects a trial wave function |ΨT⟩ onto the ground
state of the system. Observables are evaluated through

⟨�̂�⟩ =
⟨ΨT ∣ 𝑒−Θ�̂��̂�𝑒−Θ�̂� ∣ ΨT⟩

⟨ΨT ∣ 𝑒−2Θ�̂� ∣ ΨT⟩
, (3.23)

with Θ the projection parameter. The algorithm employs a Hubbard-Stratonovich decomposition of the interaction
terms. This results in a free fermionic system, where any observable can be computed via the Wick’s theorem from
the Green’s functions. The QMC method consists in a stochastic sampling of the Hubbard-Stratonovich fields. We
refer to Ref. [10] for a discussion of the AF QMC method.
As trial wave function |ΨT⟩, we used the half-filled ground state of

�̂�T = ∑
⟨𝑖,𝑗⟩

2𝑆
∑
𝛼=1

(�̂�(𝑖,𝛼),(𝑗,𝛼) + H.c.) . (3.24)

We scaled the projection parameter Θ with linear system size 𝐿, usually comparing the results obtained with Θ =
𝐿/4 and Θ = 𝐿/2, ensuring that they reflect ground state properties. Furthermore, we chose the parameters for
suppression of charge fluctuations and projection onto the maximally symmetric representation around 𝑈 = 4/Θ,
𝐽𝐻 = 4/𝜃, while always checking that charge fluctuations are sufficiently suppressed and ⟨ ̂𝐶⟩ = 𝐶(𝑁, 𝑆) [cf.
Eq. (3.22)].
To detect the realization of different ground states, we have sampled the spin two-point function 𝑆(𝒌) and the cor-
relations of the dimer operator 𝐷𝑖𝑗(𝒌) in momentum space, defined as

𝑆(𝒌) ≡ 1
(𝑁2 − 1)𝑁2𝑟

∑
𝒓,𝑎

𝑒𝑖𝒌𝒓 ⟨ ̂𝑆(𝑎)
0 ̂𝑆(𝑎)

𝒓 ⟩ , (3.25)

58 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

𝐷𝑖𝑗(𝒌) ≡ 1
(𝑁2 − 1)𝑁2𝑟

∑
𝒓,𝑎,𝑏

𝑒𝑖𝒌𝒓⋅

[⟨(̂𝑆(𝑎)
0 ̂𝑆(𝑎)

0+𝒆𝑖
) (̂𝑆(𝑏)

𝒓 ̂𝑆(𝑏)
𝒓+𝒆𝑗)⟩ − ⟨ ̂𝑆(𝑎)

0 ̂𝑆(𝑎)
0+𝒆𝑖

⟩ ⟨ ̂𝑆(𝑏)
𝒓 ̂𝑆(𝑏)

𝒓+𝒆𝑗⟩],
(3.26)

where 𝑁𝑟 = 𝐿2 is the number of sites in a lattice of linear size 𝐿 and 𝒆𝑖 is the elementary lattice unit vector on the
𝑖−th direction. The normalization in Eqs. (3.25) and (3.26) ensure a finite thermodynamic and large-𝑁 limit. Using
these observables, we can distinguish the Néel state and different dimerized ground states, to be discussed below.
The AFM Néel state exhibits long-range spin-spin correlations at momentum 𝒌 = (𝜋, 𝜋). Thus, it can be detected
by the staggered magnetization 𝑚

𝑚2 = 𝑆(𝒌 = (𝜋, 𝜋)). (3.27)

Fig. 3.7: Sketch of possible dimerized ground states. (a)-(c) The VBS states. Each of those states is fourfold de-
generate, the corresponding states can be obtained by rotations and translations. (d) A “Haldane nematic” state, an
equivalent state is obtained by rotations of 90∘. (e) A unique ground state. States (d) and (e) are at best understood
within an AKLT construction, in which, very much as done in our calculation, the spin 𝑆 on each site is constructed
by a totally symmetric superposition of 2𝑆 states that are denoted by bullets around each site on the right-hand side
of (d) and (e). These bullets correspond to an irreducible representation of 𝔰𝔲(𝑁) with one column (𝑆 = 1/2) and
𝑁/2 rows. In the nematic state, each spin-1/2 forms a singlet with the nearest neighbor along the axis of the broken
symmetry. The AKLT state is relevant for the 𝑆 = 2 state, where each spin-1/2 on a given site can be combined
into a singlet with a nearest-neighbor spin-1/2 without breaking a lattice symmetry.

The valence bond state (VBS) breaks the lattice rotation and translation symmetries, realizing a fourfold degenerate
pattern of strong and weak dimers. This is realized by different sets of bond configurations, illustrated in Figs. 3.7(a)-
(c). Beyond the commonly identified columnar order, sketched in Fig. 3.7(a), there are two additional VBS states
[Figs. 3.7(b) and (c)]. Notably, all three patterns break the lattice translation symmetry, but only columnar and ladder
order break the four-fold rotation symmetry. VBS order can be detected by a suitable order parameter 𝜙 defined in
terms of the dimer correlations

𝜙2 ≡ 𝐷𝑥𝑥(𝒌) + 𝐷𝑦𝑦(𝒌), 𝒌 = (𝜋, 0). (3.28)

We average 𝜙 over the two equivalent momenta (𝜋, 0), and (0, 𝜋) as to obtain an improved estimator.
For integer values of 𝑆, we investigate the possible realization of the “Haldane nematic” Affleck-Kennedy-Lieb-
Tasaki (AKLT) phase [18, 19, 20, 21]. This state is twofold degenerate and breaks the rotational symmetry but,
unlike the VBS state, does not break translational symmetry. We illustrate it in Fig. 3.7(d). For such a phase we have
𝜙 = 0 and a suitable order parameter can be defined as [100]

𝜓2 ≡ 𝐷𝑥𝑥(𝒌) + 𝐷𝑦𝑦(𝒌) − 𝐷𝑥𝑦(𝒌) − 𝐷𝑦𝑥(𝒌), 𝒌 = 0. (3.29)

𝜓 is designed to pick up rotation symmetry breaking in the dimers and therefore does also not vanish for columnar
and ladder order. Therefore, 𝜓 distinguishes plaquette with𝐶4 symmetry from VBS order with broken𝐶4 symmetry.
Finally, a two-dimensional version of the AKLT phase, with singlets on all bonds as sketched in Fig. 3.7(e), is also
possible for 𝑆 = 2. This non-degenerate state does not break any symmetry, therefore all previously defined order
parameters vanish. In Table 3.1 we summarize the different orders.

3.4. Results 59

Dissertation Jonas Schwab

Table 3.1: List of considered ground states with their ordering momenta
in reciprocal space and matrix of order parameters defined in Eqs. (3.27),
(3.28), (3.29).

Phase Ordering momenta 𝐶4 Lattice symmetry preserved 𝑚 𝜙 𝜓
Néel (𝜋, 𝜋) yes ≠ 0 0 0
Columnar (𝜋, 0) or (0, 𝜋) no 0 ≠ 0 ≠ 0
Plaquette (𝜋, 0) and (0, 𝜋) yes 0 ≠ 0 0
Ladder (𝜋, 0) or (0, 𝜋) no 0 ≠ 0 ≠ 0
Nematic (0, 0) no 0 0 ≠ 0
2d AKLT (0, 0) yes 0 0 0

Same as in Chapter 2, we use the correlation ratio 𝑅𝑂 to pinpoint the order:

𝑅𝑂 ≡ 1 − 𝑂(𝒑 + 𝛿𝒑)
𝑂(𝒑) , (3.30)

where 𝑂(𝒑) is the two-point function of the order parameter in Fourier space, and 𝛿𝒑 is the minimum nonzero
momentum on a finite lattice. On the square lattice, 𝛿𝒑 = (2𝜋/𝐿, 0) or 𝛿𝒑 = (0, 2𝜋/𝐿); as usual, one can average
over the two minimum displacements to obtain an improved estimator. The correlation ratio is closely related to the
second-moment finite-size correlation length 𝜉, which on a square lattice can be defined as [101, 102]

𝜉 = 1
2 sin(𝜋/𝐿)√ 𝑂(𝒑)

𝑂(𝒑 + 𝛿𝒑) − 1. (3.31)

In a disordered phase, 𝜉 as defined in Eq. (3.31) converges to the second-moment correlation length for 𝐿 → ∞,
such that 𝜉/𝐿 → 0 and 𝑅0 → 0. In an ordered phase, due to the lack of spontaneous symmetry breaking in any
finite size, 𝜉/𝐿 diverges for 𝐿 → ∞ and, conversely, 𝑅0 → 1. In the vicinity of a critical point, 𝑅𝑂 and 𝜉/𝐿 are
renormalization-group invariant quantities. Their crossing can be used to locate the onset of the phase transition,
rendering them powerful quantities to diagnose the ground-state order and to study phase transitions.
An ergodic QMC simulation averages over all symmetry-breaking states. As a result, we are not able to observe the
ordered state directly, but have to refer to correlation functions that do not average out to zero when averaging over
all degenerate ground states. Unfortunately, such an approach does not distinguish between the different VBS states
illustrated in Figs. 3.7(a)-(c). To obtain additional insights we use the method of a pinning field [103, 104]. In this
approach, we explicitly break the symmetry by making one AFM interaction at the origin 𝐽pin ∑𝑎

̂𝑆(𝑎)
0 ̂𝑆(𝑎)

0+𝒆x
stronger

than the other interactions 𝐽 ∑𝑎
̂𝑆(𝑎)
𝒓 ̂𝑆(𝑎)

𝒓+𝒆𝑖 . The resulting Hamiltonian reads:

�̂� = 𝐽 ∑
(𝒓,𝑖)≠(0,x)

∑
𝑎

̂𝑆(𝑎)
𝒓 ̂𝑆(𝑎)

𝒓+𝒆𝑖 + 𝐽pin ∑
𝑎

̂𝑆(𝑎)
0 ̂𝑆(𝑎)

0+𝒆x
, (3.32)

with 𝐽pin > 𝐽 . Therefore, we explicitly choose one of multiple degenerate ground states by pinning the bond (0, 0 +
𝒆x) and the bond observable

𝐵𝑖(𝒓) ≡ 1
𝐶(𝑁, 𝑆) ⟨∑

𝑎
̂𝑆(𝑎)
𝒓 ̂𝑆(𝑎)

𝒓+𝒆𝑖⟩ 𝑖 = x, y (3.33)

does not vanish as in the unpinned case. We notice that the AFM interactions in the Hamiltonian favors aminimization
of 𝐵𝑖(𝒓). As proven in Appendix. B.4, 𝐵𝑖(𝒓) ≥ −1 and approaches −1 when the two spins form a singlet.
We have chosen 𝐽pin such that the pinned bond satisfies

⟨∑
𝑎

̂𝑆(𝑎)
0 ̂𝑆(𝑎)

0+𝒆x
⟩ ≈ 1

2
⎛⎜
⎝

1
2𝑁𝑟

∑
(𝒓,𝑖),𝑎

⟨ ̂𝑆(𝑎)
𝒓 ̂𝑆(𝑎)

𝒓+𝒆𝑖⟩ − 𝐶(𝑁, 𝑆)⎞⎟
⎠

. (3.34)

The right-hand side corresponds to the point halfway between the background and the minimal value of
⟨∑𝑎

̂𝑆(𝑎)
0 ̂𝑆(𝑎)

0+𝒆x
⟩. This results in 𝐽pin between 1.2𝐽 and 1.5𝐽 .

At large distances from the pinned bond, one will either be able to explicitly observe the “selected” order through
𝐵𝑖(𝒓) (if 𝜙 or 𝜓 are nonzero), or the order will vanish.

60 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

3.4.2 𝑆 = 1/2

S
D

xx
+

D
yy

D
xy

D
yx

D
xx

+
D

yy

N = 2 Néel N = 4 Néel N = 6 VBS

0 0
0

10

kx
ky

0 0

0.15
0.20
0.25

kx
ky

0 0

0.15
0.20

kx
ky

0 0
0
1

0 0

0.2
0.3

0 0

0.2
0.3

0 0
0.0

0.5

0 0

2
4

0 0

2
4

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

Fig. 3.8: Correlation functions 𝑆(𝒌) [Eq. (3.25)] and 𝐷𝑖𝑗(𝒌) [Eq. (3.25)] for the representation of Fig. 3.2 with
𝑆 = 1/2 and different values of 𝑁 .

We first study the representations of Fig. 3.2 with 𝑆 = 1/2. In Fig. 3.8, we show the structure factor 𝑆(𝒌)
[Eq. (3.25)], and the two combinations of dimer correlations 𝐷𝑖𝑗(𝒌) appearing in the definitions of the order pa-
rameter 𝜙 [Eq. (3.28)] and 𝜓 [Eq. (3.29)]. By considering three values of 𝑁 , we analyze the evolution of the order
parameters across the transition between the Néel and VBS order. For 𝑁 = 2, we realize a standard 𝑆 = 1/2
Heisenberg model on the square lattice, which displays a Néel order in the ground state. As expected, 𝑆(𝒌) shows
a strong peak at (𝜋, 𝜋); in comparison, the other order parameters are suppressed. Upon increasing 𝑁 to 𝑁 = 4,
we observe the emergence of peaks at (𝜋, 0) and (0, 𝜋) for the other order parameters. As shown below using the
correlation ratios, though close to the phase transition to the VBS state, the ground state is still Néel ordered. For
𝑁 = 6 we observe a strong peak at (𝜋, 0) and (0, 𝜋) for the 𝐷𝑥𝑥(𝒌) + 𝐷𝑦𝑦(𝒌) order parameters, indicating the
realization of the VBS phase.
To obtain a reliable determination of the ground state, we study the correlation ratios of the three order parameters
discussed in Sec. 3.4.1. In Fig. 3.9, we show the three correlation ratios 𝑅𝑚, 𝑅𝜙, and 𝑅𝜓 as a function of 𝑁 , for
lattice sizes 𝐿 = 4, 8, 12, 16. The crossing plot of 𝑅𝑚 indicates the disappearance of Néel order at 𝑁 ≈ 4. At the
same time, the curves of𝑅𝜙 and𝑅𝜓 exhibit a crossing for values of𝑁 > 4; in particular, for𝑁 = 4 both𝑅𝜙 and𝑅𝜓
decrease with the lattice size, indicating that both VBS and nematic order are short-ranged for 𝑁 = 4. Therefore, as
anticipated above, for 𝑁 = 4 the ground state is still a Néel order. This confirms the result of Ref. [105, 106, 107].
At 𝑁 = 6, 𝑅𝑚 decreases with 𝐿, while 𝑅𝜙 and 𝑅𝜓 increases in 𝐿, for 𝐿 ≥ 6; the 𝐿 = 4 data set is dominated by
finite-size effects. Accordingly, for 𝑁 = 6 the ground state realizes VBS order.
These observations are confirmed by the real-space plot of the bond intensity shown in Fig. 3.10, as obtained with the
pinning-field method. For 𝑁 = 4, in the vicinity of the pinned bond we observe a pattern reminiscent of the VBS
order of Fig. 3.7. However, at larger distances the modulation of bond intensity quickly decays, confirming that VBS
order is actually short ranged. For 𝑁 = 6, we observe a very clear pattern of strong and weak bonds that realize the
VBS order.

3.4. Results 61

Dissertation Jonas Schwab

0.25

0.50

0.75

R m

(a)

0.1 0.2
1/L

0.64
0.65 R m

0.00

0.25

0.50

0.75

R

(b)
L = 4
L = 8

L = 12 L = 16

2 4 6
N

0.0

0.2

0.4

R

(c)

Fig. 3.9: Correlation ratios of the staggered magnetization 𝑚 [Eq. (3.27)], 𝜙 [Eq. (3.28)] and 𝜓 [Eq. (3.29)] order
parameters for 𝑆 = 1/2, as a function of 𝑁 , and for lattice sizes 𝐿 = 4 − 16.

N = 4 Néel(a)

0.55 0.50 0.45 0.40 0.35 0.30 0.25

0.40 0.38 0.36 0.34 0.32 0.30

N = 6 VBS(b)

0.6 0.5 0.4 0.3 0.2

0.45 0.40 0.35 0.30 0.25 0.20

Fig. 3.10: Real-space value of bonds 𝐵𝑖(𝒓) [Eq. (3.33)], as measured after pinning the central bond, for 𝑆 = 1/2
and lattice size 𝐿 = 18. Due to the observed different variations in the bond strength, in order to better highlight the
patterns of bond correlations we have used different color scales for the region close and far from the pinned bond.
The biggest error of the outer bonds is indicated by two red lines on the color scale. We have symmetrized the results
with regards to inversions 𝑦 → −𝑦, 𝑥 → −𝑥 around the pinned bond.

62 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

3.4.3 𝑆 = 1

S
D

xx
+

D
yy

D
xy

D
yx

D
xx

+
D

yy

N = 8 Néel N = 10 Haldane Nem. N = 12 VBS

0 0
0
2

kx
ky

0 0
0.5

1.0

kx
ky

0 0

0.6

0.8

kx
ky

0 0
0

1

0 0

2.5
5.0

0 0

1
2

0 0
0

1

0 0

5
10

0 0

2.5
5.0
7.5

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

Fig. 3.11: Same as Fig. 3.8 for 𝑆 = 1.

In studying the representations with 𝑆 = 1, we proceed analogously to the 𝑆 = 1/2 case discussed in Sec. 3.4.2. In
Fig. 3.11, we show the order parameters in momentum space for the case 𝑆 = 1, and three representative values of
𝑁 . For 𝑁 = 8, a clear peak of the spin structure factor at (𝜋, 𝜋), along with a comparatively smoother momentum
dependence of the other order parameters, indicate the presence of Néel order. At 𝑁 = 10, we observe instead the
emergence of a clear signal of the nematic order parameter at zero momentum. The VBS order parameter exhibits
a similar peak at zero momentum, whose signal predominantly arises from the nematic order parameter, while at
momentum (𝜋, 0) a subdominant peak is observed. The Néel order parameter instead does not show a predominant
signal at (𝜋, 𝜋), but rather equally large values at the corners of the Brillouin zone. These behaviors suggest the onset
of the two-fold degenerate nematic order. For 𝑁 = 12 a clear signal at (𝜋, 0) momentum appears in the VBS order
parameter. Along with the sharp zero-momentum value of the nematic order parameter, these findings suggest the
realization of VBS order for 𝑁 = 12.
As we did for the 𝑆 = 1/2 case, the above qualitative observations on the momentum dependence of the various
order parameters can be put on firm ground by examining the correlation ratios shown in Fig. 3.12. The magnetic
correlation ratio 𝑅𝑚 displays a crossing at about 𝑁 ≈ 8, such that for 𝑁 > 8, 𝑅𝑚 decreases with the lattice size.
On the other hand, at 𝑁 = 8 both 𝑅𝜙 and 𝑅𝜓 decrease on increasing 𝐿, implying that both VBS and nematic order
are short ranged. Therefore, one can conclude that for 𝑁 = 8 the ground state is antiferromagnetically ordered. The
behavior of𝑅𝜙 shows rather important finite-size corrections. In fact, while curves for𝐿 ≤ 10 cross for 8 < 𝑁 < 10,
the crossing point quickly increases with 𝐿, such that for 𝐿 ≥ 12 a crossing is found for 10 < 𝑁 < 12. In particular,
𝑁 = 10 has a nonmonotonic behavior, increasing in 𝐿 for 𝐿 ≤ 10, and decreasing for 𝐿 ≥ 12. This observation
supports the presence of a significant, but still short-ranged, VBS order, which is responsible for important finite-size
corrections. The nematic correlation ratio 𝑅𝜓 shows a crossing between 𝑁 = 8 and 𝑁 = 10. Also, here we observe
a clear drift in the crossing of 𝑅𝜓, although the situation for 𝑁 = 10 is rather clear and indicates long-range order in
𝜓. In view of these observations, and referring to Table 3.1, we conclude that a nematic ground state is realized for
𝑁 = 10, while for 𝑁 ≥ 12 the ground-state is VBS ordered.
These conclusions are nicely confirmed by the real-space plots of the bond strength obtained with the pinning-field
method and shown in Fig. 3.13. For 𝑁 = 10 we clearly observe the formation of a twofold degenerate stripe-like
structure, signalling the presence of the nematic order. For 𝑁 = 12 instead a VBS order is found. Interestingly,
while for 𝑆 = 1/2 the VBS order found at 𝑁 = 6 (Fig. 3.10) resembles the ladder order illustrated in Fig. 3.7, for
𝑆 = 1 and 𝑁 = 12 the VBS pattern shown in Fig. 3.13 rather suggests the plaquette order of Fig. 3.7.

3.4. Results 63

Dissertation Jonas Schwab

0.2

0.4

0.6

R m

(a)

0.1 0.2
1/L

0.64
0.65 R m

0.0

0.2

0.4

0.6

R

(b)
L = 4
L = 6
L = 8

L = 10
L = 12

L = 14
L = 16

8 10 12
N

0.00

0.25

0.50

0.75

R

(c)

Fig. 3.12: Same as Fig. 3.9 for 𝑆 = 1.

N = 10 Haldane Nem.(a)

0.7 0.6 0.5 0.4 0.3 0.2

0.38 0.36 0.34 0.32 0.30 0.28 0.26

N = 12 VBS(b)

0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10

Fig. 3.13: Same as Fig. 3.10 for 𝑆 = 1.

64 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

3.4.4 𝑆 = 3/2

S
D

xx
+

D
yy

D
xy

D
yx

D
xx

+
D

yy
N = 12 Néel N = 14 (VBS) N = 16 (VBS) N = 18 VBS

0 0
0

5

kx
ky

0 0

1.5
2.0
2.5

kx
ky

0 0

1.4
1.6

kx
ky

0 0
0

2

0 0
1
2
3

0 0

1.5
2.0

0 0
0
1

0 0

2
4

0 0

2

4

0 0
0

1

0 0

2.5
5.0
7.5

0 0

2.5
5.0
7.5

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

Fig. 3.14: Same as Fig. 3.8 for 𝑆 = 3/2.

In Fig. 3.14, we show the order parameters in momentum space, and 𝑁 = 12 − 18. Analogous to the cases analyzed
in the previous sections, for 𝑁 = 12 we find a signal of Néel order. In the region 14 ≤ 𝑁 ≤ 16, QMC data do not
allow us to unambiguously single out the ground state. Upon increasing𝑁 , the peak at (𝜋, 𝜋) in 𝑆(𝒌) slowly decreases
in magnitude. At the same time, we observe the appearance of a maximum in the nematic order parameter at zero
momentum, and in the VBS order parameter for (𝜋, 0) and (0, 𝜋) momenta. Eventually, for 𝑁 = 18 the momentum
structure of the order parameters more clearly favors the realization of VBS order. The observed behavior suggests
a comparatively broad critical region around 14 ≤ 𝑁 ≤ 18.
In an attempt to better understand the ground-state diagram for𝑆 = 3/2, as for the other values of𝑆 we have analyzed
the correlation ratios, shown in Fig. 3.15. Due to the increased computational costs, we restricted the simulations
for the larger lattice sizes 𝐿 ≥ 12 to the more involved cases 12 ≤ 𝑁 ≤ 16. For smaller lattice sizes 𝐿 ≤ 10, the
curves for 𝑅𝑚 appear to cross at a value of 𝑁 very close, but smaller than 𝑁 < 12. We observe, however, some
drift towards larger values of 𝑁 in the crossings. Furthermore, as shown in the inset of Fig. 3.15, 𝑅𝑚 at 𝑁 = 12
exhibits an upwards trend for 𝐿 > 10. Together with the observed slow decrease of 𝑅𝜙 and 𝑅𝜓 in 𝐿 for 𝑁 = 12,
this implies Néel order for 𝑁 = 12.
For 𝑁 ≥ 14, the 𝐿−dependence of 𝑅𝑚 clearly rules out Néel order. On the other hand, 𝑅𝜙 slowly decreases with 𝐿
for 𝑁 = 14, and for 𝑁 = 16 it grows slightly up to 𝐿 = 8. In both cases, QMC data for 𝐿 ≥ 8 are indistinguishable
within error bars. A similar flattening of QMC data is found in 𝑅𝜓 for 𝑁 = 14, 16. This behavior does not allow
us to draw firm conclusions on the nature of the ground state for 𝑁 = 14, 16. Since a Néel state can be ruled out, a
reasonable hypothesis is the realization of a VBS state, however, with a weak order parameter.
For 𝑁 > 16, both 𝑅𝜙 and 𝑅𝜓 show a crossing close to 𝑁 = 18. Furthermore, we observe a monotonic growth of
𝑅𝜙 in 𝐿 for 𝑁 = 18. This leads us to conclude a VBS order for 𝑁 = 18.
Finally, we have studied the pattern of bond strength in real space with the pinning-field method. The results for
𝑁 = 14, 16, 18 are reported in Fig. 3.16. For 𝑁 = 14, 16, despite some signs of dimerization, we do not observe a
clear VBS pattern. In line with the previous analysis, for 𝑁 = 18 we find a bond dimerization which confirms a VBS
ground state.

3.4. Results 65

Dissertation Jonas Schwab

0.2

0.4

0.6

R m

(a)

0.1 0.2
1/L

0.64
0.65

R m

0.0

0.2

0.4

0.6

0.8

R

(b)

0.1 0.2
1/L

0.3
0.4
0.5

R

10 12 14 16 18 20
N

0.0

0.2

0.4

0.6

0.8

R

(c) L = 4
L = 6
L = 8

L = 10
L = 12

L = 14
L = 16

Fig. 3.15: Same as Fig. 3.9 for 𝑆 = 3/2.

N = 14 (VBS)(a)

0.45 0.40 0.35 0.30

0.35 0.34 0.33 0.32 0.31

N = 16 (VBS)(b)

0.45 0.40 0.35 0.30

0.34 0.33 0.32 0.31 0.30

N = 18 VBS(c)

0.5 0.4 0.3 0.2

0.36 0.34 0.32 0.30 0.28 0.26

Fig. 3.16: Same as Fig. 3.10 for 𝑆 = 3/2 and lattice size 𝐿 = 14 (𝑁 = 14, 16), 𝐿 = 12 (𝑁 = 18).

66 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

3.4.5 𝑆 = 2

As for previous values of 𝑆, we begin our investigation for 𝑆 = 2with momentum space plots of correlation functions
shown in Fig. 3.17. At 𝑁 = 16, the spin structure factor shows a sharp peak at (𝜋, 𝜋), indicating long-range AFM
order. For bigger values of 𝑁 the peak weakens and broadens, suggesting short-range AFM order. The correlations
for nematic and VBS order show only very broad maxima for the range 𝑁 ∈ [16, 22], implying the absence of both
of these orders. The correlation ratios plotted in Fig. 3.18 support these qualitative observations. The inset in Fig.
3.18(a) shows that while 𝑅𝑚 decreases at 𝑁 = 16 from 𝐿 = 4 to 𝐿 = 12, the trend is reversed on bigger lattices
and 𝑅𝑚 increases from 𝐿 = 12 to 𝐿 = 16. This indicates that 𝑁 = 16 has a Néel ground state which is close to
a competing order. Both 𝑅𝜙 and 𝑅𝜓 decrease with increasing system size in the investigated range 𝑁 ∈ [16, 24].
As per Table 3.1, this leaves a two-dimensional AKLT order as a ground-state candidate for 𝑁 ∈ [18, 24]. With
the AKLT construction corresponding to the right-hand side of Fig. 3.7(e), we understand that each boundary site
hosts an 𝔰𝔲(𝑛) representation corresponding to one column (𝑆 = 1/2) and 𝑁/2 rows. Hence the boundary defines
a one-dimensional chain in the aforementioned representation. It is known that for 𝑁 ≥ 4 this chain dimerizes [105,
106, 108, 109].
To further investigate this possibility, we simulate the model on a lattice with periodic boundary conditions in the 𝑥
direction and open boundary conditions along 𝑦, corresponding to a cylinder geometry. Fig. 3.19 shows the results
for 𝑆 = 2, 𝑁 = 18 in a pinning-field approach with pinned bonds at the edge and in the bulk, respectively. The
induced dimerization pattern propagates on the edge much further than in the bulk, supporting the presence of an
AKLT phase with boundary corresponding to an 𝑆 = 1/2 SU(𝑁) chain in the totally antisymmetric self-adjoint
representation.

S
D

xx
+

D
yy

D
xy

D
yx

D
xx

+
D

yy

N = 16 Néel

0 0
0

5

ky
kx

0 0

2

4

kx
ky

0 0

2.5

3.0

kx
ky

N = 18 AKLT

0 0
0

2

0 0

2
4

0 0

2.5
3.0
3.5

N = 20 AKLT

0 0
0

2

0 0

2.5
5.0

0 0

3
4

N = 22 AKLT

0 0
0

2

0 0

2.5
5.0
7.5

0 0

4
6

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

Fig. 3.17: Same as Fig. 3.8 for 𝑆 = 2

3.4. Results 67

Dissertation Jonas Schwab

0.2

0.4

0.6

R m

(a)

0.1 0.2
1/L

0.63
0.64
0.65

R m
0.1

0.2

0.3

R

(b) L = 4
L = 6
L = 8

L = 10
L = 12

L = 14
L = 16

16 18 20 22 24
N

0.0

0.1

0.2

0.3

0.4

R

(c)

Fig. 3.18: Same as Fig. 3.9 for 𝑆 = 2

Pinned bond

(a)

Pinned bond

(b)

0.50 0.45 0.40 0.35 0.30 0.25
Bi(r)

4 2 0 2 4 6
x

0.50

0.45

0.40

0.35

0.30
B x

(r
)

(c)

Pinning at edge
Bx(x, y = yedge, L = 8)
Bx(x, y = yedge, L = 10)
Bx(x, y = yedge, L = 12)

Pinning in bulk
Bx(x, ybulk, L = 8)
Bx(x, ybulk, L = 10)
Bx(x, ybulk, L = 12)

Fig. 3.19: Real-space value of bonds 𝐵𝑖(𝒓) for 𝑆 = 2, 𝑁 = 18, lattice size 𝐿 ∈ {8, 10, 12} and open boundary
conditions in 𝑦 direction. Comparison between pinning a bond at the edge (a) and a bond in the bulk (b). (c) 𝐵x(𝒓)
on horizontal lines through the pinned bonds.

68 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

Dissertation Jonas Schwab

3.5 Summary

We have studied the ground-state phase diagram of an SU(𝑁) AFM model on the square lattice, with irreducible
representations of 𝔰𝔲(𝑁) illustrated in Fig. 3.2 and characterized by a Young tableau consisting of 2𝑆 columns and
𝑁/2 rows. For even values of𝑁 we have presented negative sign free QMC data that results in the rich phase diagram
of Fig. 3.1. In line with field-theoretical studies [18, 20, 21], for any value of the generalized spin 𝑆, we found Néel
order at small values of 𝑁 , and a dimerized VBS state for large 𝑁 . The disordered states proximate to the melting of
the Néel state can be naturally understood in terms of condensation of monopoles. These states turn out to be located
along the 𝑁 = 8𝑆 + 2 in the 𝑆 versus 𝑁 phase diagram. At 𝑆 = 1 we observe nematic AKLT [19] states where
𝐶4 symmetry is spontaneously reduced to 𝐶2, with the emergence of spin-1 chains along one lattice direction. At
𝑆 = 2, the AKLT construction provides an understanding of the non-degenerate state. In fact, this construction can
be generalized to any spin 𝑆 = 𝑍/2 system on a lattice with coordination number 𝑍; an example for the honeycomb
lattice is given in Refs. [110, 111]. In our specific case, the edge state corresponds to an SU(𝑁) spin system in an
irreducible representation specified by a Young tableau with one column (𝑆 = 1/2) and 𝑁/2 rows. At 𝑁 ≥ 4, such
a state is known to dimerize [106]. Our simulations with open boundary conditions support this picture. For half-
integer values of 𝑆, a fourfold degenerate VBS state emerges. The detailed nature of the dimerization was studied
using a pinning-field approach [103].
While the resulting phase diagram reproduced in Fig. 3.1 will serve as a benchmark for future studies, our findings
points to future avenues of research. It would be very interesting to study in detail the quantum phase transitions be-
tween the various states. Although the present setup allows us to consider integer values of𝑁 only, it may be possible
to investigate the phase transitions with a suitably defined designer Hamiltonian containing, e.g., some interactions
that favor a specific phase, so as to be able to interpolate between them. The topological arguments that lead to the
observed phase diagram carry over to other representation of 𝔰𝔲(𝑁), such that further calculations with alternative
methods such as stochastic series expansion [112] are certainly desirable.

3.5. Summary 69

Dissertation Jonas Schwab

70 Chapter 3. Phase diagram of the SU(𝑁) antiferromagnet of spin 𝑆 on a square lattice

CHAPTER

FOUR

PYALF DOCUMENTATION

The two previous chapters covered my research projects, which used the quantum Monte Carlo (QMC) package
ALF [11, 12]. It is a powerful tool for simulating a broad set of fermionic systems, but since it’s written in Fortran,
it is not very dynamic and can be a bit daunting for new users.
In the process of performing my research projects, I developed an ALF workflow using Python scripts, which has
resulted in the pyALF package. It is meant to simplify the different steps of working with ALF, including:

• Obtaining and compiling the ALF source code
• Preparing and running simulations
• Postprocessing and displaying the data obtained during the simulation

The source codes for both ALF and pyALF are publicly available at https://git.physik.uni-wuerzburg.de/ALF.
Section 4.1 describes the prerequisites of pyALF and how to set things up to be able to use it in a productive manner.
Section 4.2 displays the features of pyALF and how to use them on small examples.
For a reference on pyALF’s features, see Section 4.3.

4.1 Prerequisites and installation

This section lists the prerequisites of pyALF and how to set things up to be able to use it in a productive manner.

4.1.1 ALF prerequisites

Since pyALF builds on ALF, we also want to satisfy its requirements. Note, however, that pyALF’s postprocessing
features are independent from ALF. This might be relevant, for example, when performing QMC runs and analysis
on different machines.
The minimal ALF prerequisites are:

• The Unix shell Bash
• Make
• A recent Fortran Compiler (e. g. Submodules must be supported)
• BLAS+LAPACK
• Python 3

For parallelization, an MPI development library, e. g. Open MPI, is necessary.
Results from ALF can either be saved in a plain text format or HDF5, but full pyALF support is only provided for
the latter, which is why in pyALF, HDF5 is enabled by default. ALF automatically downloads and compiles HDF5.
For this to succeed, the following is needed:

71

https://git.physik.uni-wuerzburg.de/ALF

Dissertation Jonas Schwab

• A C compiler (which is most often automatically included when installing a Fortran Compiler)
• A C++ preprocessor
• Curl or Wget
• gzip development libraries

The recommended way for obtaining the source code is through git.
Finally, the ALF testsuite needs:

• CMake
As an example, the requirements mentioned above can be satisfied on a Debian, Ubuntu, or similar operating system
using the APT package manager, by executing the command:

sudo apt install make gfortran libblas-dev liblapack-dev \
python3 libopenmpi-dev g++ curl libghc-zlib-dev \
git ca-certificates cmake bash

The above installs compilers from the GNU compiler collection1. Other supported and tested compiler frameworks
are from the Intel® oneAPI Toolkits2 and the NVIDIA HPC SDK3. The latter is denoted as PGI in ALF.

4.1.2 pyALF installation

Warning

In previous versions of pyALF, the installation instructions asked the users to set the environment variable
PYTHONPATH. This conflicts with the newer pip package, therefore you should remove definitions of the
PYTHONPATH environment variable related to pyALF.

pyALF can be installed via the Python package installer pip4.

pip install pyALF

It automatically installs all requirements, but in case you want to install them in a different way, e.g. through apt or
conda, these are the Python packages pyALF depends on:

• f90nml
• h5py
• ipympl
• ipywidgets
• matplotlib
• numba
• numpy
• pandas
• scipy
• tkinter

1 https://gcc.gnu.org/
2 https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
3 https://developer.nvidia.com/nvidia-hpc-sdk-downloads
4 https://pip.pypa.io/en/stable/

72 Chapter 4. pyALF Documentation

https://gcc.gnu.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://developer.nvidia.com/nvidia-hpc-sdk-downloads
https://pip.pypa.io/en/stable/

Dissertation Jonas Schwab

4.1.2.1 Development installation

If you want to develop pyALF, you can clone the repository and install it in development mode5, which allows you to
edit the files while using them like an installed package. For this, it is highly recommended to use a dedicated Python
environment using e.g. Python venv6 or a conda environment7. The following example shows how to install pyALF
in development mode using venv.

git clone https://git.physik.uni-wuerzburg.de/ALF/pyALF.git
cd pyALF
python -m venv .venv
source .venv/bin/activate

pip install --editable .

4.1.3 Setting ALF directory through environment variable

Since pyALF is set up to automatically clone ALF with git, it is not strictly necessary to download ALF manually, but
pyALF will download ALF every time it does not find it. Therefore it is recommended to clone ALF once manually
from here8 and setting its location in the environment variable ALF_DIR. This way, pyALF will use the same ALF
source code directory every time.
ALF can be cloned with the Unix shell command

git clone https://git.physik.uni-wuerzburg.de/ALF/ALF.git

This will create a folder called ALF in the current working directory of the terminal and download the repository
there9.
The environment variable can then be set with the command

export ALF_DIR="/path/to/ALF"

where /path/to/ALF is the location of the ALF code, for example /home/jonas/Programs/ALF. To not
have to repeat this command in every terminal session, it is advisable to add it to a file sourced when starting the shell,
e.g. ~/.bashrc or ~/.zshrc.

4.1.4 Check setup

To check if most things have been set up correctly, the script minimal_ALF_run can be used. It executes the
same commands as the Minimal example. One should therefore be able to run it by executing

minimal_ALF_run

in the Unix shell. If it does clone the ALF repository, ALF_DIR has not been set up correctly. Note that on the first
compilation, ALF downloads and compiles HDF5, which can take up to ~15 minutes.

5 https://setuptools.pypa.io/en/latest/userguide/development_mode.html
6 https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
7 https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
8 https://git.physik.uni-wuerzburg.de/ALF/ALF
9 It is a lesser known fact that git is completely decentralized and the concept of a central repository is rather only a convention. Every git

repository is an autonomous repository of itself. If, for example, pyALF has been cloned to /path/to/ALF, one could clone this repository
with git clone /path/to/ALF.

4.1. Prerequisites and installation 73

https://setuptools.pypa.io/en/latest/userguide/development_mode.html
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://git.physik.uni-wuerzburg.de/ALF/ALF

Dissertation Jonas Schwab

4.1.5 Using Jupyter Notebooks

A convenient way to work with pyALF (and Python in general) is through Jupyter Notebooks. These are interactively
usable documents that combine source code, results and narration (through Markdown10) in one file. pyALF includes
example notebooks, online available from here11, or by cloning the pyALF repository12.
The canonical way to use the Jupyter Notebooks, is through a JupyterLab, which can for example be installed via pip
(for more details see here13):

pip install jupyterlab

A JupyterLab can then be started with the shell command jupyter-lab, which launches a web server that should
be automatically opened in your default browser.
Another convenient way to work with the notebooks is with Visual Studio Code14, a versatile and extendable source-
code editor.

4.1.6 Ready-to-use container image

For a ready-to-use environment, one can use the Docker image alfcollaboration/jupyter-pyalf-full15, which has the
above mentioned dependencies, ALF and pyALF installed. With a suitable container runtime e.g. Docker16 or
Podman17, it can be used to run ALF and pyALF without any further setup. It is derived from the Jupyter Docker
Stacks, therefore this documentation18 applies. For example, one could run a container like this:

docker run -it --rm -p 127.0.0.1:8888:8888 -v "$PWD":/home/jovyan/work \
docker.io/alfcollaboration/jupyter-pyalf-full

• The -p19 flag is used to expose port 8888 and you can access a JupyterLab running within the container by
navigating to http://localhost:8888/lab?token=<token> with you browser, where <token>
has to be replaced by the token echoed to the terminal on startup.

• The -v20 flag mounts the current working directory to /home/jovyan/work within the container, allowing
to work on the same data in- and outside of the container.

• The –rm21 flag instructs Docker to automatically remove the container after it exits, avoiding cluttering up the
system with unused containers.

• The -i22 and -t23 flags keep the container’s STDIN open and attach a pseudo-terminal, allowing interactive
input on the terminal.

It is also possible to use the container without launching the included JupyterLab. The following command launches
a container, which executes minimal_ALF_run, saving the results in the current working directory and removing
the container right after that.

docker run -it --rm -v "$PWD":/home/jovyan/work \
docker.io/alfcollaboration/jupyter-pyalf-full \
bash -c 'cd /home/jovyan/work && minimal_ALF_run'

10 https://www.markdownguide.org/
11 https://git.physik.uni-wuerzburg.de/ALF/pyALF/-/tree/master/Notebooks
12 https://git.physik.uni-wuerzburg.de/ALF/pyALF
13 https://jupyter.org/install
14 https://code.visualstudio.com/
15 https://hub.docker.com/r/alfcollaboration/jupyter-pyalf-full
16 https://www.docker.com/
17 https://podman.io/
18 https://jupyter-docker-stacks.readthedocs.io
19 https://docs.docker.com/reference/cli/docker/container/run/#publish
20 https://docs.docker.com/reference/cli/docker/container/run/#volume
21 https://docs.docker.com/reference/cli/docker/container/run/#rm
22 https://docs.docker.com/reference/cli/docker/container/run/#interactive
23 https://docs.docker.com/reference/cli/docker/container/run/#tty

74 Chapter 4. pyALF Documentation

https://www.markdownguide.org/
https://git.physik.uni-wuerzburg.de/ALF/pyALF/-/tree/master/Notebooks
https://git.physik.uni-wuerzburg.de/ALF/pyALF
https://jupyter.org/install
https://code.visualstudio.com/
https://hub.docker.com/r/alfcollaboration/jupyter-pyalf-full
https://www.docker.com/
https://podman.io/
https://jupyter-docker-stacks.readthedocs.io
https://docs.docker.com/reference/cli/docker/container/run/#publish
https://docs.docker.com/reference/cli/docker/container/run/#volume
https://docs.docker.com/reference/cli/docker/container/run/#rm
https://docs.docker.com/reference/cli/docker/container/run/#interactive
https://docs.docker.com/reference/cli/docker/container/run/#tty

Dissertation Jonas Schwab

4.1.7 Some SSH port forwarding applications

ALF simulations are often performed on remote clusters that are accessed via SSH. Notably, SSH can be used for
much more than running a remote shell. In this section, I will show how one can use SSH port forwarding to download
data to HPC clusters with restrictive firewalls and how to access a JupyterLab launched on an HPC cluster.

4.1.7.1 Use remote forwarding to circumvent restrictive firewalls

If one wanted to git clone the ALF source code, this could usually be done with one of the following commands,
using HTTPS or SSH, respectively.

git clone https://git.physik.uni-wuerzburg.de:443/ALF/ALF.git
git clone git@git.physik.uni-wuerzburg.de:ALF/ALF.git

But on some systems with very restrictive firewalls, this approach might not work. This is where the ssh option -R24

might come in handy. It maps a port on the remote machine to a an address connected to from the local machine on
which the SSH command was executed. To facilitate a connection to git.physik.uni-wuerzburg.de, the
following commands can be used, connecting to port 443 or 22, for the HTTPS or SSH protocol, respectively.

ssh -R <PortNum>:git.physik.uni-wuerzburg.de:443 <username>@<servername>
ssh -R <PortNum>:git.physik.uni-wuerzburg.de:22 <username>@<servername>

Here <PortNum> refers to a port on the remote machine, a value in the range from 49152 to 65535 would be best
here [113]. And <username>@<servername> is the usual SSH address. Alternatively to the command line
option -R, the SSH config file option RemoteForward25 can be used.
With these port forwarding options, the ALF source code can then be cloned on the remote machine with:

git clone -c http.sslVerify=false https://localhost:<PortNum>/ALF/ALF.git
git clone ssh://git@localhost:<PortNum>/ALF/ALF.git

The HTTPS version needs the option -c http.sslVerify=false because the SSL certificate for git.
physik.uni-wuerzburg.de does not apply to localhost.
One can omit the host value in the -R option (in the example above git.physik.uni-wuerzburg.de:443)
which will set up a dynamic SOCKS proxy, able to connect to arbitrary addresses. This can be used, for example, to
download and install packages with pip.

Warning

Ports on the remote machine opened with -R / RemoteForward can not only be used by you, but possibly
also by other users of the machine. Therefore one should be careful when using the options, in particular without
specifying a host.

Using -R without a host to install pyALF with pip:

ssh -R <PortNum> <username>@<servername>

That pip can use the SOCKS proxy, the python package pysocks is necessary. If the package is not yet available,
it is enough to get the file socks.py from here26 and have Python find it, e.g. with the environment variable
PYTHONPATH.
Then pyALF can be installed with:

pip install --proxy socks4://localhost:<PortNum> pyALF

24 https://man.openbsd.org/ssh#R
25 https://man.openbsd.org/ssh_config#RemoteForward
26 https://github.com/Anorov/PySocks/blob/master/socks.py

4.1. Prerequisites and installation 75

https://man.openbsd.org/ssh#R
https://man.openbsd.org/ssh_config#RemoteForward
https://github.com/Anorov/PySocks/blob/master/socks.py

Dissertation Jonas Schwab

4.1.7.2 Using Jupyter via SSH tunnel

When launching JupyterLab, it sets up a webserver and prints out how to access it locally, like:

http://localhost:<remote_port_number>/lab?token=<token>

Where <remote_port_number> is some port number (default 8888) and <token> is the password to access
the server.
Now, to access this web server on the remote machine, one can forward this port to the local machine using the SSH
option -L27 and open it with the browser.

ssh -L <local_port_number>:localhost:<remote_port_number> <username>@<servername>

With the command from above, a remote JupyterLab will be accessible trough the address http://
localhost:<local_port_number>:/lab?token=<token>.

4.1.7.3 Using SSH in Visual Studio Code

Here, a reference to use ssh in Visual Studio Code is provided: https://code.visualstudio.com/docs/remote/ssh

4.2 Usage

This section demonstrates how to use pyALF through small examples that can be directly executed, if everything has
been set up as described in Section 4.1. It first shows on a minimal example how to run an ALF simulation and get
some results. Then the different features of pyALF are expanded in more detail.

• Minimal example

• Compiling and running ALF

• Postprocessing

– Basic analysis

– Custom/Derived Observables

– Checking warmup and autocorrelation times

– Symmetrization of correlations on the lattice

• Command line tools

For a reference on all features, see Section 4.3.

Tip

The Python builtin help()28 is very useful for getting information on an object. Try e.g.
help(Simulation) after importing Simulation from py_alf.

27 https://man.openbsd.org/ssh#L
28 https://docs.python.org/3/library/functions.html#help

76 Chapter 4. pyALF Documentation

https://man.openbsd.org/ssh#L
https://code.visualstudio.com/docs/remote/ssh
https://docs.python.org/3/library/functions.html#help

Dissertation Jonas Schwab

4.2.1 Minimal example

In this bare-bones example we simulate the Hubbard model with default the default presets: a 6 × 6 square grid, with
interaction strength 𝑈 = 4 and inverse temperature 𝛽 = 5.
Bellow we go through the steps for performing the simulation and outputting observables.

1. Import ALF_source and Simulation classes from the py_alf python module, which provide the interface
with ALF:

from py_alf import ALF_source, Simulation # Interface with ALF

2. Create an instance of ALF_source, downloading the ALF source code from the ALF repository29, if alf_dir
does not exist. Gets alf_dir from environment variable $ALF_DIR, or defaults to "./ALF", if not present:

alf_src = ALF_source()

3. Create an instance of Simulation, overwriting default parameters as desired:

sim = Simulation(
alf_src,
"Hubbard", # Name of Hamiltonian
{ # Dictionary overwriting default parameters

"Lattice_type": "Square"
},
machine='GNU' # Change to "intel", or "PGI" if gfortran is not installed

)

4. Compile ALF. The first time it will also download and compile HDF5, which could take ∼15 minutes.
sim.compile()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters
filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_

↪Kondo_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_

↪Hubbard_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90 Hamiltonians/

↪Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_

↪Z2_Matter_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/

↪Hamiltonian_Spin_Peierls_read_write_parameters.F90
Compiling program modules
Link program
Done.

29 https://git.physik.uni-wuerzburg.de/ALF

4.2. Usage 77

https://git.physik.uni-wuerzburg.de/ALF

Dissertation Jonas Schwab

5. Perform the simulation as specified in sim:

sim.run()

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪Hubbard_Square" for Monte Carlo run.

Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

6. Perform some simple analysis:

sim.analysis()

Analyzing /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_
↪Square ###

/home/jonas/dissertation/jb/chap4_pyalf/usage
Scalar observables:
Ener_scal
Kin_scal
Part_scal
Pot_scal
Histogram observables:
Equal time observables:
Den_eq
Green_eq
SpinT_eq
SpinXY_eq
SpinZ_eq
Time displaced observables:
Den_tau
Green_tau
SpinT_tau
SpinXY_tau
SpinZ_tau

7. Read analysis results into a Pandas Dataframe with one row per simulation, containing parameters and observables:

obs = sim.get_obs()

/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_Square
No orbital locations saved.

obs

continuous ham_chem \
/home/jonas/dissertation/jb/chap4_pyalf/usage/A... 0 0.0

ham_t ham_t2 ham_tperp \
/home/jonas/dissertation/jb/chap4_pyalf/usage/A... 1.0 1.0 1.0

ham_u ham_u2 mz l1 l2 \
/home/jonas/dissertation/jb/chap4_pyalf/usage/A... 4.0 4.0 1 6 6

... \
/home/jonas/dissertation/jb/chap4_pyalf/usage/A... ...

(continues on next page)

78 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
␣

↪ SpinXY_tauK_err \
/home/jonas/dissertation/jb/chap4_pyalf/usage/A... [[0.22628722504548163, 0.

↪376854598540396, 0.01...

␣
↪ SpinXY_tauR \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... [[0.0575988003757765, -0.
↪10378742200169441, 0....

␣
↪ SpinXY_tauR_err \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... [[0.012488346667988096, 0.
↪036871289378231954, ...

␣
↪ SpinXY_tau_lattice \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... {'L1': [6.0, 0.0], 'L2': [0.
↪0, 6.0], 'a1': [1....

␣
↪ SpinZ_tauK \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... [[0.9040036362033993, 0.
↪5628191896020671, 0.61...

␣
↪ SpinZ_tauK_err \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... [[0.14947867503118553, 0.
↪06006336638595224, 0....

␣
↪ SpinZ_tauR \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... [[0.10134420531394882, -0.
↪11445552391592617, 0...

␣
↪ SpinZ_tauR_err \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... [[0.06273438448505807, 0.
↪0563907804306374, 0.0...

␣
↪ SpinZ_tau_lattice \

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... {'L1': [6.0, 0.0], 'L2': [0.
↪0, 6.0], 'a1': [1....

␣
↪ lattice

/home/jonas/dissertation/jb/chap4_pyalf/usage/A... {'L1': [6.0, 0.0], 'L2': [0.
↪0, 6.0], 'N_coord'...

[1 rows x 111 columns]

• The internal energy of the system (and its error) are accessed by:

obs.iloc[0][['Ener_scal0', 'Ener_scal0_err', 'Ener_scal_sign', 'Ener_scal_sign_err
↪']]

Ener_scal0 -29.821914
Ener_scal0_err 0.13032
Ener_scal_sign 1.0
Ener_scal_sign_err 0.0

(continues on next page)

4.2. Usage 79

Dissertation Jonas Schwab

(continued from previous page)
Name: /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_Square,␣

↪dtype: object

Warning

While it is very easy to get some results, as demonstrated right now, there are many caveats with using QMC, and
a naive approach will quickly lead to wrong results.
Three of those caveats, namely numerical stability, warmup and autocorrelation will later be briefly addressed.
For more details, please refer to the ALF documentation30.

• The simulation can be resumed by calling sim.run() again, increasing the precision of results:
sim.run()
sim.analysis()
obs2 = sim.get_obs()
obs2.iloc[0][['Ener_scal0', 'Ener_scal0_err', 'Ener_scal_sign', 'Ener_scal_sign_

↪err']]

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪Hubbard_Square" for Monte Carlo run.

Resuming previous run.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.

Analyzing /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_
↪Square ###

/home/jonas/dissertation/jb/chap4_pyalf/usage
Scalar observables:
Ener_scal
Kin_scal
Part_scal
Pot_scal
Histogram observables:
Equal time observables:
Den_eq
Green_eq
SpinT_eq
SpinXY_eq
SpinZ_eq
Time displaced observables:
Den_tau
Green_tau
SpinT_tau
SpinXY_tau
SpinZ_tau
/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_Square
No orbital locations saved.

Ener_scal0 -29.609245
Ener_scal0_err 0.136803
Ener_scal_sign 1.0
Ener_scal_sign_err 0.0
Name: /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_Square,␣

↪dtype: object

30 https://git.physik.uni-wuerzburg.de/ALF/ALF/-/jobs/artifacts/master/raw/Documentation/doc.pdf?job=create_doc

80 Chapter 4. pyALF Documentation

https://git.physik.uni-wuerzburg.de/ALF/ALF/-/jobs/artifacts/master/raw/Documentation/doc.pdf?job=create_doc

Dissertation Jonas Schwab

print(f"""Running again changed the error
from {obs.iloc[0]['Ener_scal0_err']}
to {obs2.iloc[0]['Ener_scal0_err']}""")

Running again changed the error
from 0.13032001865023543
to 0.13680286324412563

The error was not actually reduced as expected, hinting at problems with e.g. warmup, autocorrelation, or fat tails.

4.2.2 Compiling and running ALF

This section focuses on the “ALF interface” part of pyALF, i.e. how to compile ALF and run ALF simulations. This
revolves around the classes ALF_source and Simulation defined in the module py_alf that have already
been briefly introduced in Section 4.2.1.
We start with some imports:

from pprint import pprint # Pretty print
from py_alf import ALF_source, Simulation # Interface with ALF

4.2.2.1 Class ALF_source

The Class py_alf.ALF_source points to a folder containing the ALF source code. It has the following signature:

class ALF_source(
alf_dir=os.getenv('ALF_DIR', './ALF'),
branch=None,
url='https://git.physik.uni-wuerzburg.de/ALF/ALF.git'

)

Where os.getenv('ALF_DIR', './ALF') gets the environment variable $ALF_DIR if present and other-
wise returns './ALF'. If the directory alf_dir does exist, the program assumes it contains the ALF source code
and will raise an Exception if that is not the case. If alf_dir does not exist, the source code will be cloned form
url. If branch is set, git checks it out.
We will just use the default:

alf_src = ALF_source()

And see if it successfully found ALF:

alf_src.alf_dir

'/home/jonas/Programs/ALF'

We can use the function py_alf.ALF_source.get_ham_names() to see which Hamiltonians are imple-
mented:

alf_src.get_ham_names()

['Kondo',
'Hubbard',
'Hubbard_Plain_Vanilla',
'tV',
'LRC',
'Z2_Matter',
'Spin_Peierls']

4.2. Usage 81

Dissertation Jonas Schwab

And then view the list of parameters and their default values for a particular Hamiltonian. The Hamiltonian-specific
parameters are listed first, followed by the Hamiltonian-independent parameters.

pprint(alf_src.get_default_params('Hubbard'))

OrderedDict([('VAR_lattice',
{'L1': {'comment': 'Length in direction a_1',

'defined_in_base': False,
'value': 6},

'L2': {'comment': 'Length in direction a_2',
'defined_in_base': False,
'value': 6},

'Lattice_type': {'comment': '',
'defined_in_base': False,
'value': 'Square'},

'Model': {'comment': 'Value not relevant',
'defined_in_base': False,
'value': 'Hubbard'}}),

('VAR_Model_Generic',
{'Beta': {'comment': 'Inverse temperature',

'defined_in_base': False,
'value': 5.0},

'Bulk': {'comment': 'Twist as a vector potential (.T.), or at '
'the boundary (.F.)',

'defined_in_base': False,
'value': True},

'Checkerboard': {'comment': 'Whether checkerboard decomposition '
'is used',

'defined_in_base': False,
'value': True},

'Dtau': {'comment': 'Thereby Ltrot=Beta/dtau',
'defined_in_base': False,
'value': 0.1},

'N_FL': {'comment': 'Number of flavors',
'defined_in_base': True,
'value': 1},

'N_Phi': {'comment': 'Total number of flux quanta traversing '
'the lattice',

'defined_in_base': False,
'value': 0},

'N_SUN': {'comment': 'Number of colors',
'defined_in_base': True,
'value': 2},

'Phi_X': {'comment': 'Twist along the L_1 direction, in units '
'of the flux quanta',

'defined_in_base': False,
'value': 0.0},

'Phi_Y': {'comment': 'Twist along the L_2 direction, in units '
'of the flux quanta',

'defined_in_base': False,
'value': 0.0},

'Projector': {'comment': 'Whether the projective algorithm is '
'used',

'defined_in_base': True,
'value': False},

'Symm': {'comment': 'Whether symmetrization takes place',
'defined_in_base': True,
'value': True},

'Theta': {'comment': 'Projection parameter',
'defined_in_base': False,
'value': 10.0}}),

('VAR_Hubbard',

(continues on next page)

82 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
{'Continuous': {'comment': 'Uses (T: continuous; F: discrete) HS '

'transformation',
'defined_in_base': False,
'value': False},

'Ham_U': {'comment': 'Hubbard interaction',
'defined_in_base': False,
'value': 4.0},

'Ham_U2': {'comment': 'For bilayer systems',
'defined_in_base': False,
'value': 4.0},

'Ham_chem': {'comment': 'Chemical potential',
'defined_in_base': False,
'value': 0.0},

'Mz': {'comment': 'When true, sets the M_z-Hubbard model: Nf=2, '
'demands that N_sun is even, HS field couples '
'to the z-component of magnetization; '
'otherwise, HS field couples to the density',

'defined_in_base': False,
'value': True},

'ham_T': {'comment': 'Hopping parameter',
'defined_in_base': False,
'value': 1.0},

'ham_T2': {'comment': 'For bilayer systems',
'defined_in_base': False,
'value': 1.0},

'ham_Tperp': {'comment': 'For bilayer systems',
'defined_in_base': False,
'value': 1.0}}),

('VAR_QMC',
{'Amplitude': {'comment': 'Width of the box distribution for '

'update of type t=3,4 fields. '
'Defaults to 1.0.',

'value': 1.0},
'CPU_MAX': {'comment': 'Code stops after CPU_MAX hours, if 0 or '

'not specified, the code stops after '
'Nbin bins',

'value': 0.0},
'Delta_t_Langevin_HMC': {'comment': 'Time step for Langevin or '

'HMC',
'value': 0.1},

'Global_moves': {'comment': 'Allows for global moves in space '
'and time.',

'value': False},
'Global_tau_moves': {'comment': 'Allows for global moves on a '

'single time slice.',
'value': False},

'HMC': {'comment': 'HMC update', 'value': False},
'LOBS_EN': {'comment': 'End measurements at time slice LOBS_EN',

'value': 0},
'LOBS_ST': {'comment': 'Start measurements at time slice '

'LOBS_ST',
'value': 0},

'Langevin': {'comment': 'Langevin update', 'value': False},
'Leapfrog_steps': {'comment': 'Number of leapfrog iterations',

'value': 0},
'Ltau': {'comment': '1 to calculate time-displaced Green '

'functions; 0 otherwise.',
'value': 1},

'Max_Force': {'comment': 'Max Force for Langevin', 'value': 5.0},
'N_HMC_sweeps': {'comment': 'Number of HMC sweeps', 'value': 1},
'N_global': {'comment': 'Number of global moves per sweep.',

(continues on next page)

4.2. Usage 83

Dissertation Jonas Schwab

(continued from previous page)
'value': 1},

'N_global_tau': {'comment': 'Number of global moves that will '
'be carried out on a single time '
'slice.',

'value': 1},
'Nbin': {'comment': 'Number of bins.', 'value': 5},
'Nsweep': {'comment': 'Number of sweeps per bin.', 'value': 20},
'Nt_sequential_end': {'comment': '', 'value': -1},
'Nt_sequential_start': {'comment': '', 'value': 0},
'Nwrap': {'comment': 'Stabilization. Green functions will be '

'computed from scratch after each time '
'interval Nwrap*Dtau.',

'value': 10},
'Propose_S0': {'comment': 'Proposes single spin flip moves with '

'probability exp(-S0).',
'value': False},

'sequential': {'comment': 'Conventional updating scheme',
'value': True}}),

('VAR_errors',
{'N_Back': {'comment': 'If set to 1, substract background in '

'correlation functions. Is ignored in '
'Python analysis.',

'value': 1},
'N_Cov': {'comment': 'If set to 1, covariance computed for '

'time-displaced correlation functions. Is '
'ignored in Python analysis.',

'value': 0},
'N_auto': {'comment': 'If > 0, calculate autocorrelation. Is '

'ignored in Python analysis.',
'value': 0},

'N_rebin': {'comment': 'Rebinning: Number of bins to combine '
'into one.',

'value': 1},
'N_skip': {'comment': 'Number of bins to be skipped.',

'value': 1}}),
('VAR_TEMP',
{'N_Tempering_frequency': {'comment': 'The frequency, in units '

'of sweeps, at which the '
'exchange moves are '
'carried out.',

'value': 10},
'N_exchange_steps': {'comment': 'Number of exchange moves.',

'value': 6},
'Tempering_calc_det': {'comment': 'Specifies whether the '

'fermion weight has to be '
'taken into account while '
'tempering. Can be set to .F. '
'if the parameters that get '
'varied only enter the Ising '
'action S_0',

'value': True},
'mpi_per_parameter_set': {'comment': 'Number of mpi-processes '

'per parameter set.',
'value': 2}}),

('VAR_Max_Stoch',
{'Checkpoint': {'comment': '', 'value': False},
'NBins': {'comment': 'Number of bins for Monte Carlo.',

'value': 250},
'NSweeps': {'comment': 'Number of sweeps per bin.', 'value': 70},
'N_alpha': {'comment': 'Number of temperatures.', 'value': 14},
'Ndis': {'comment': 'Number of boxes for histogram.',

(continues on next page)

84 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
'value': 2000},

'Ngamma': {'comment': 'Number of Dirac delta-functions for '
'parametrization.',

'value': 400},
'Nwarm': {'comment': 'The Nwarm first bins will be ommitted.',

'value': 20},
'Om_en': {'comment': 'Frequency range upper bound.',

'value': 10.0},
'Om_st': {'comment': 'Frequency range lower bound.',

'value': -10.0},
'R': {'comment': '', 'value': 1.2},
'Tolerance': {'comment': '', 'value': 0.1},
'alpha_st': {'comment': '', 'value': 1.0}})])

4.2.2.2 Class Simulation

To set up a simulation, we create an instance of py_alf.Simulation, which has the signature

class Simulation(alf_src, ham_name, sim_dict, **kwargs)

wherealf_src is an instance ofpy_alf.ALF_source, ham_name is the name of the Hamiltonian to simulate,
sim_dict is a dictionary of parameter: value pairs overwriting the default parameters and **kwargs
represents optional keyword arguments.
The minimal set of required arguments does not overwrite any default parameters:

sim = Simulation(alf_src, 'Hubbard', {})

Before running the simulation, ALF needs to be compiled.

sim.compile()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters
filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_

↪Kondo_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_

↪Hubbard_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90 Hamiltonians/

↪Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_

↪Z2_Matter_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/

↪Hamiltonian_Spin_Peierls_read_write_parameters.F90
Compiling program modules
Link program
Done.

Preparation of the simulation is done by executing the following command:

4.2. Usage 85

Dissertation Jonas Schwab

sim.run()

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪Hubbard" for Monte Carlo run.

Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

It is strongly advised to take a look at the info file info produced by ALF after a finished run, in particular the value
of “Precision Green” and “Precision Phase”. As a rule of thumb, the means should be of order 10−8 or smaller and
the max should not be bigger than 10−3. If they’re bigger, one should decrease the stabilization interval Nwrap (see
parameter list 'VAR_QMC' above). In our case, they’re about right.

sim.print_info_file()

===== /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard/info =====
=====================================
Model is : Hubbard
Lattice is : Square
unit cells : 36
of orbitals : 1
Flux_1 : 0.0000000000000000
Flux_2 : 0.0000000000000000
Twist as phase factor in bulk
HS couples to z-component of spin
Checkerboard : T
Symm. decomp : T
Finite temperture version
Beta : 5.0000000000000000
dtau,Ltrot_eff: 0.10000000000000001 50
N_SUN : 2
N_FL : 2
t : 1.0000000000000000
Ham_U : 4.0000000000000000
t2 : 1.0000000000000000
Ham_U2 : 4.0000000000000000
Ham_tperp : 1.0000000000000000
Ham_chem : 0.0000000000000000
No initial configuration, Seed_in 790789
Sweeps : 20
Bins : 5
No CPU-time limitation
Measure Int. : 1 50
Stabilization,Wrap : 10
Nstm : 5
Ltau : 1
of interacting Ops per time slice : 36
Default sequential updating
This executable represents commit 24234d19 of branch master.
Precision Green Mean, Max : 3.4949708528056399E-011 3.3070368266052697E-

↪007
Precision Phase, Max : 0.0000000000000000
Precision tau Mean, Max : 6.3437557434930669E-012 3.6803000015572795E-

↪008
Acceptance : 0.42958333333333332
Effective Acceptance : 0.42958333333333332
CPU Time : 4.0360565509999997

86 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

4.2.2.3 Specifying parameters

Here is an example of a simulation with non-default parameters. We have changed the dimensions to 4 by 4 sites and
increased the interaction 𝑈 to 4.0 and the number of bins calculated to 20. Since we did not change the compile-time
configuration (some of the **kwargs do), a recompilation is not required.

sim = Simulation(
alf_src,
'Hubbard',
{

Model specific parameters
'L1': 4,
'L2': 4,
'Ham_U': 4.0,
QMC parameters
'Nbin': 20,

},
)
sim.run()

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪Hubbard_L1=4_L2=4_U=4.0" for Monte Carlo run.

Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

Note that the new simulation has been placed in ALF_data/Hubbard_L1=4_L2=4_U=4.0 relative to the
current working directory. That is, simulations are placed in the folder {sim_root}/{sim_dir}, where
sim_root defaults to 'ALF_data' and sim_dir is generated out of the Hamiltonian name and the non-default
model specific parameters. A behavior that can be overwritten through the **kwargs. Note that Nbin does not
enter sim_dir, since it is a QMC parameter and not a Hamiltonian parameter.
The monitoring in the info file does not show any stabilization issues:

sim.print_info_file()

===== /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_L1=4_L2=4_
↪U=4.0/info =====
=====================================
Model is : Hubbard
Lattice is : Square
unit cells : 16
of orbitals : 1
Flux_1 : 0.0000000000000000
Flux_2 : 0.0000000000000000
Twist as phase factor in bulk
HS couples to z-component of spin
Checkerboard : T
Symm. decomp : T
Finite temperture version
Beta : 5.0000000000000000
dtau,Ltrot_eff: 0.10000000000000001 50
N_SUN : 2
N_FL : 2
t : 1.0000000000000000
Ham_U : 4.0000000000000000
t2 : 1.0000000000000000

(continues on next page)

4.2. Usage 87

Dissertation Jonas Schwab

(continued from previous page)
Ham_U2 : 4.0000000000000000
Ham_tperp : 1.0000000000000000
Ham_chem : 0.0000000000000000
No initial configuration, Seed_in 790789
Sweeps : 20
Bins : 20
No CPU-time limitation
Measure Int. : 1 50
Stabilization,Wrap : 10
Nstm : 5
Ltau : 1
of interacting Ops per time slice : 16
Default sequential updating
This executable represents commit 24234d19 of branch master.
Precision Green Mean, Max : 3.6448966471271451E-011 2.5289980969123160E-

↪007
Precision Phase, Max : 0.0000000000000000
Precision tau Mean, Max : 8.7134381626013185E-012 2.0840410398792475E-

↪007
Acceptance : 0.42600781250000003
Effective Acceptance : 0.42600781250000003
CPU Time : 3.8189617760000001

4.2.2.4 Series of MPI runs

Starting each run separately can be cumbersome, therefore we provide the following example, which creates a
list of Simulation instances that can be run in a loop, performing a sweep in 𝑈 . To increase the statistics
of the results, MPI parallelization is employed. Since the default MPI executable mpiexec does not fit with
the MPI libraries used during compilation on the test machine, we have changed it to orterun. The option
mpiexec_args=['--oversubscribe'] hands over the flag --oversubscribe to orterun, which
allows it to run more MPI tasks than there are slots available, see the Open MPI documentation31 for details.

sims = [
Simulation(

alf_src,
'Hubbard',
{

Model specific parameters
'L1': 4,
'L2': 4,
'Ham_U': U,
QMC parameters
'Nbin': 20,

},
mpi=True,
n_mpi=4,
mpiexec='orterun',
mpiexec_args=['--oversubscribe'],

)
for U in [1.0, 2.0, 3.0]]

sims

[<py_alf.simulation.Simulation at 0x7f1550971c10>,
<py_alf.simulation.Simulation at 0x7f155c1bdc40>,
<py_alf.simulation.Simulation at 0x7f157c102630>]

31 https://www.open-mpi.org/doc

88 Chapter 4. pyALF Documentation

https://www.open-mpi.org/doc

Dissertation Jonas Schwab

Note

The above employs Python’s list comprehensions32, a convenient and readable way to create Python lists. Here is
a simple example, employing list comprehension (and f-strings33):
>>> [f'x={x}' for x in [1, 2, 3]]
['x=1', 'x=2', 'x=3']

Since we are changing from non-MPI to MPI, ALF has to be recompiled:

Warning

pyALF does not check how ALF has been compiled previously, so the user has to take care of issuing recompi-
lation if necessary.

sims[0].compile()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters
filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_

↪Kondo_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_

↪Hubbard_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90 Hamiltonians/

↪Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_

↪Z2_Matter_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/

↪Hamiltonian_Spin_Peierls_read_write_parameters.F90
Compiling program modules
Link program
Done.

Loop over list of jobs:

for sim in sims:
sim.run()

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪Hubbard_L1=4_L2=4_U=1.0" for Monte Carlo run.

Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL

(continues on next page)
32 https://docs.python.org/3/tutorial/datastructures.html#tut-listcomps
33 https://docs.python.org/3/reference/lexical_analysis.html#f-strings

4.2. Usage 89

https://docs.python.org/3/tutorial/datastructures.html#tut-listcomps
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

Dissertation Jonas Schwab

(continued from previous page)
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪Hubbard_L1=4_L2=4_U=2.0" for Monte Carlo run.

Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪Hubbard_L1=4_L2=4_U=3.0" for Monte Carlo run.

Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

for sim in sims:
sim.print_info_file()

===== /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_L1=4_L2=4_
↪U=1.0/info =====
=====================================
Model is : Hubbard
Lattice is : Square
unit cells : 16
of orbitals : 1
Flux_1 : 0.0000000000000000
Flux_2 : 0.0000000000000000
Twist as phase factor in bulk
HS couples to z-component of spin
Checkerboard : T
Symm. decomp : T
Finite temperture version
Beta : 5.0000000000000000
dtau,Ltrot_eff: 0.10000000000000001 50
N_SUN : 2
N_FL : 2
t : 1.0000000000000000
Ham_U : 1.0000000000000000
t2 : 1.0000000000000000
Ham_U2 : 4.0000000000000000
Ham_tperp : 1.0000000000000000
Ham_chem : 0.0000000000000000
No initial configuration, Seed_in 814342
Sweeps : 20
Bins : 20
No CPU-time limitation
Measure Int. : 1 50
Stabilization,Wrap : 10
Nstm : 5
Ltau : 1
of interacting Ops per time slice : 16
Default sequential updating
Number of mpi-processes : 4

(continues on next page)

90 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
This executable represents commit 24234d19 of branch master.
Precision Green Mean, Max : 4.7770138116091871E-014 3.1588759386025345E-

↪012
Precision Phase, Max : 0.0000000000000000
Precision tau Mean, Max : 1.3814341899797833E-014 5.2165077812915683E-

↪012
Acceptance : 0.44432578125000000
Effective Acceptance : 0.44432578125000000
CPU Time : 4.6781053379999999

===== /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_L1=4_L2=4_
↪U=2.0/info =====
=====================================
Model is : Hubbard
Lattice is : Square
unit cells : 16
of orbitals : 1
Flux_1 : 0.0000000000000000
Flux_2 : 0.0000000000000000
Twist as phase factor in bulk
HS couples to z-component of spin
Checkerboard : T
Symm. decomp : T
Finite temperture version
Beta : 5.0000000000000000
dtau,Ltrot_eff: 0.10000000000000001 50
N_SUN : 2
N_FL : 2
t : 1.0000000000000000
Ham_U : 2.0000000000000000
t2 : 1.0000000000000000
Ham_U2 : 4.0000000000000000
Ham_tperp : 1.0000000000000000
Ham_chem : 0.0000000000000000
No initial configuration, Seed_in 814342
Sweeps : 20
Bins : 20
No CPU-time limitation
Measure Int. : 1 50
Stabilization,Wrap : 10
Nstm : 5
Ltau : 1
of interacting Ops per time slice : 16
Default sequential updating
Number of mpi-processes : 4
This executable represents commit 24234d19 of branch master.
Precision Green Mean, Max : 2.6978900287668899E-013 1.9449365382118167E-

↪010
Precision Phase, Max : 0.0000000000000000
Precision tau Mean, Max : 7.6016248578584409E-014 2.8435920285119209E-

↪010
Acceptance : 0.43524999999999997
Effective Acceptance : 0.43524999999999997
CPU Time : 4.4471584740000001

===== /home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/Hubbard_L1=4_L2=4_
↪U=3.0/info =====
=====================================
Model is : Hubbard
Lattice is : Square
unit cells : 16

(continues on next page)

4.2. Usage 91

Dissertation Jonas Schwab

(continued from previous page)
of orbitals : 1
Flux_1 : 0.0000000000000000
Flux_2 : 0.0000000000000000
Twist as phase factor in bulk
HS couples to z-component of spin
Checkerboard : T
Symm. decomp : T
Finite temperture version
Beta : 5.0000000000000000
dtau,Ltrot_eff: 0.10000000000000001 50
N_SUN : 2
N_FL : 2
t : 1.0000000000000000
Ham_U : 3.0000000000000000
t2 : 1.0000000000000000
Ham_U2 : 4.0000000000000000
Ham_tperp : 1.0000000000000000
Ham_chem : 0.0000000000000000
No initial configuration, Seed_in 814342
Sweeps : 20
Bins : 20
No CPU-time limitation
Measure Int. : 1 50
Stabilization,Wrap : 10
Nstm : 5
Ltau : 1
of interacting Ops per time slice : 16
Default sequential updating
Number of mpi-processes : 4
This executable represents commit 24234d19 of branch master.
Precision Green Mean, Max : 2.6692496305360124E-012 6.9421481896370096E-

↪009
Precision Phase, Max : 0.0000000000000000
Precision tau Mean, Max : 6.9494808527483376E-013 8.4657683641076176E-

↪009
Acceptance : 0.42918789062500001
Effective Acceptance : 0.42918789062500001
CPU Time : 4.6657046165000002

4.2.2.5 Parallel Tempering

ALF offers the possibility to employ Parallel Tempering [114], also known as Exchange Monte Carlo [115], where
simulations with different parameters but the same configuration space are run in parallel and can exchange config-
urations. A method developed to overcome ergodicity issues.
To use Parallel Tempering in pyALF, sim_dict has to be replaced by a list of dictionaries, for this we use again
Python’s list comprehension syntax. This does also imply mpi=True, since Parallel Tempering needs MPI.

sim = Simulation(
alf_src,
'Hubbard',
[

{
Model specific parameters
'L1': 4,
'L2': 4,
'Ham_U': U,
QMC parameters
'Nbin': 20,
'mpi_per_parameter_set': 2

(continues on next page)

92 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
} for U in [2.5, 3.5]

],
mpi=True,
n_mpi=4,
mpiexec='orterun',
mpiexec_args=['--oversubscribe'],

)

Recompile for Parallel Tempering:

sim.compile()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters
filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_

↪Kondo_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_

↪Hubbard_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90 Hamiltonians/

↪Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_

↪Z2_Matter_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/

↪Hamiltonian_Spin_Peierls_read_write_parameters.F90
Compiling program modules
Link program
Done.

sim.run()

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/
↪temper_Hubbard_L1=4_L2=4_U=2.5" for Monte Carlo run.

Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/

↪temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/

↪temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

sim.print_info_file()

The output from this command has been omitted for brevity.

4.2. Usage 93

Dissertation Jonas Schwab

4.2.2.6 Only preparing runs

In many cases, it might not be feasible to execute ALF directly through pyALF, for example when using an HPC
scheduler, but one might still like to use pyALF for preparing the simulation directories. In this case the two options
copy_bin and only_prep of py_alf.Simulation.run() come in handy. Here we also demonstrate the
keyword arguments sim_root and sim_dir.

import numpy as np
JK_list = np.linspace(0.0, 3.0, num=11)
print(JK_list)

sims = [
Simulation(

alf_src,
'Kondo',
{

"Model": "Kondo",
"Lattice_type": "Bilayer_square",
"L1": 16,
"L2": 16,
"Ham_JK": JK,
"Ham_Uf": 1.,
"Beta": 20.0,
"Nsweep": 500,
"NBin": 400,
"Ltau": 0,
"CPU_MAX": 48

},
mpi=True,
sim_root="KondoBilayerSquareL16",
sim_dir=f"JK{JK:2.1f}",

) for JK in JK_list
]

[0. 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.]

Do not forget to recompile when switching from Parallel Tempering back to normal MPI runs.

sims[0].compile()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters
filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_

↪Kondo_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_

↪Hubbard_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90 Hamiltonians/

↪Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_

↪Z2_Matter_read_write_parameters.F90

(continues on next page)

94 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/

↪Hamiltonian_Spin_Peierls_read_write_parameters.F90
Compiling program modules
Link program
Done.

for sim in sims:
sim.run(copy_bin=True, only_prep=True)

Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/
↪KondoBilayerSquareL16/JK0.0" for Monte Carlo run.

Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK0.3" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK0.6" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK0.9" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK1.2" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK1.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK1.8" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK2.1" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK2.4" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK2.7" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/

↪KondoBilayerSquareL16/JK3.0" for Monte Carlo run.
Create new directory.

Now there are 11 directories, ready for the job scheduler.

ls KondoBilayerSquareL16/*

KondoBilayerSquareL16/JK0.0:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK0.3:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK0.6:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK0.9:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK1.2:

(continues on next page)

4.2. Usage 95

Dissertation Jonas Schwab

(continued from previous page)
ALF.out* parameters seeds

KondoBilayerSquareL16/JK1.5:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK1.8:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK2.1:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK2.4:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK2.7:
ALF.out* parameters seeds

KondoBilayerSquareL16/JK3.0:
ALF.out* parameters seeds

4.2.3 Postprocessing

The following sections demonstrate the postprocessing features in pyALF, each section can be executed individually,
if QMC raw data from Section 4.2.2 is present.

• Basic analysis

• Custom/Derived Observables

• Checking warmup and autocorrelation times

• Symmetrization of correlations on the lattice

4.2.3.1 Basic analysis

As already shown in Section 4.2.1, the basic analysis can be executed through py_alf.Simulation.
analysis(), which in turn calls py_alf.analysis(). This section demonstrates how to directly use the
latter function and how to access and work with analysis results.
As a first step, some libraries and functions are imported. The Jupyter magic command %matplotlib widget
enables the Matplotlib Jupyter Widget Backend34, which is not necessary in this part, but for the functions used in
Section 4.2.3.3, therefore it makes sense to establish it as a default.

Enable Matplotlib Jupyter Widget Backend
%matplotlib widget

Imports
import numpy as np # Numerical libary
import matplotlib.pyplot as plt # Plotting library
from py_alf.analysis import analysis # Analysis function
from py_alf.utils import find_sim_dirs # Function for finding QMC bins
from py_alf.ana import load_res # Function for loading analysis results

The function find_sim_dirs() returns a list of all directories containing a file named data.h5, the file con-
taining all QMC measurements if ALF has been compiled with HDF5. We use it to conveniently list all simulations
run in the previous sections.

34 https://github.com/matplotlib/ipympl

96 Chapter 4. pyALF Documentation

https://github.com/matplotlib/ipympl

Dissertation Jonas Schwab

dirs = find_sim_dirs()
dirs

['./ALF_data/Hubbard',
'./ALF_data/Hubbard_L1=4_L2=4_U=1.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=2.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=3.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=4.0',
'./ALF_data/Hubbard_Square',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1',
'./ALF_data_back/Hubbard_Square']

Looping over this list, we call analysis() for each directory. The function reads QMC bins from data.h5, or
if this file does not exist alternatively from all files ending in _scal, _eq and _tau. Furthermore, n_skip and
n_rebin are read from the file parameters. The analysis omits the first n_skip bins and combines n_rebin
original bins into a new one35. On the resulting bins, Jackknife resampling [116] is applied to estimate expectation
values and their standard error. For brevity, the resulting printout is truncated.

for directory in dirs:
analysis(directory)

Analyzing ./ALF_data/Hubbard
/home/jonas/dissertation/jb/chap4_pyalf/usage
Scalar observables:
Ener_scal
Kin_scal
Part_scal
Pot_scal
Histogram observables:
Equal time observables:
Den_eq
Green_eq
SpinT_eq
SpinXY_eq
SpinZ_eq
Time displaced observables:
Den_tau
Green_tau
SpinT_tau
SpinXY_tau
SpinZ_tau
Analyzing ./ALF_data/Hubbard_L1=4_L2=4_U=1.0
/home/jonas/dissertation/jb/chap4_pyalf/usage
Scalar observables:
...
...
...

35 We will elaborate further on rebinning in Section 4.2.3.3.

4.2. Usage 97

Dissertation Jonas Schwab

4.2.3.1.1 Get analysis results

The analysis results are saved in each simulation directory, both in plain text in the folder res and as a pickled36
Python dictionary in the file res.pkl.
The binary data from multiple res.pkl files can be conveniently read with load_res(), which returns a single
pandas DataFrame37, a tabular data structure. It not only contains analysis results, but also the Hamiltonian-
specific parameters. The parameter names are in all lower case.

res = load_res(dirs)

./ALF_data/Hubbard
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=1.0
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=2.0
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=3.0
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=4.0
No orbital locations saved.
./ALF_data/Hubbard_Square
No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0
No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1
No orbital locations saved.
./ALF_data_back/Hubbard_Square
No orbital locations saved.

The DataFrame has one row per simulation directory, which is also used as the index:

res.index

Index(['./ALF_data/Hubbard', './ALF_data/Hubbard_L1=4_L2=4_U=1.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=2.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=3.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=4.0', './ALF_data/Hubbard_Square',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1',
'./ALF_data_back/Hubbard_Square'],

dtype='object')

Column indices can be accessed through:

res.columns

Index(['continuous', 'ham_chem', 'ham_t', 'ham_t2', 'ham_tperp', 'ham_u',
'ham_u2', 'mz', 'l1', 'l2',
...
'R_Ferro', 'R_Ferro_err', 'R_AFM', 'R_AFM_err', 'SpinZ_pipi',
'SpinZ_pipi_err', 'SpinXY_pipi', 'SpinXY_pipi_err', 'SpinXYZ_pipi',
'SpinXYZ_pipi_err'],

dtype='object', length=129)

In the following, we will only use results from one simulation, corresponding to one row in the DataFrame. It is
selected with:

36 https://docs.python.org/3/library/pickle.html#module-pickle
37 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

98 Chapter 4. pyALF Documentation

https://docs.python.org/3/library/pickle.html#module-pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Dissertation Jonas Schwab

item = res.loc['./ALF_data/Hubbard']

Which is equivalent to

item = res.iloc[0]

Most, but not all of the same data is also stored in plain text form in the folder ALF_data/Hubbard/res:

ls ALF_data/Hubbard/res

Den_eq_K Green_eq_K R_AFM SpinXY_eq_K_sum SpinZ_eq_R
Den_eq_K_sum Green_eq_K_sum R_Ferro SpinXY_eq_R SpinZ_eq_R_sum
Den_eq_R Green_eq_R SpinT_eq_K SpinXY_eq_R_sum SpinZ_pipi
Den_eq_R_sum Green_eq_R_sum SpinT_eq_K_sum SpinXY_pipi SpinZ_tau/
Den_tau/ Green_tau/ SpinT_eq_R SpinXY_tau/
Ener_scal Kin_scal SpinT_eq_R_sum SpinXYZ_pipi
E_pot_kin Part_scal SpinT_tau/ SpinZ_eq_K
E_squared Pot_scal SpinXY_eq_K SpinZ_eq_K_sum

Scalar observables

Scalar observable results are stored as multiple scalar values, storing the sign, observable expectation value and their
statistical errors. Here are, for example, the results for the internal energy Ener_scal, consisting of four scalar
values:

for i in item.keys():
if i.startswith('Ener_scal'):

print(i, item[i])

Ener_scal_sign 1.0
Ener_scal_sign_err 0.0
Ener_scal0 -29.821914139681642
Ener_scal0_err 0.13032001865023543

Note the 0 in Ener_scal0 and Ener_scal0_err. This is the index in the vector of observables Ener_scal,
since a scalar observable can hold a vector of scalars.
The same data is present in this plain text file:

!cat ALF_data/Hubbard/res/Ener_scal

Sign: 1.0 0.0
-2.982191413968164184e+01 1.303200186502354307e-01

Example

Here is a simple example that demonstrates the convenience of working with pandas DataFrames. We select out of
all simulations the one with 𝐿1 = 4 and plot their internal energy against The value of the Hubbard 𝑈 .

Create figure with axis labels
fig, ax = plt.subplots()
ax.set_xlabel(r'Hubbard interaction U')
ax.set_ylabel(r'Internal energy E')

Select only rows with l1==4 and sort by ham_u
df = res[res.l1 == 4].sort_values(by='ham_u')

(continues on next page)

4.2. Usage 99

Dissertation Jonas Schwab

(continued from previous page)
Plot data
ax.errorbar(df.ham_u, df.Ener_scal0, df.Ener_scal0_err);

Equal-time correlation functions

ALF and pyALF offer support for correlation functions of the form

𝐶(𝒓, 𝑛1, 𝑛2) = 1
𝑁𝑟

∑
𝒓0

⟨𝑂(𝒓0, 𝑛1)𝑂(𝒓0 + 𝒓, 𝑛2)⟩ − ⟨𝑂(𝑛1)⟩ ⟨𝑂(𝑛2)⟩

𝐶(𝒌, 𝑛1, 𝑛2) = 1
𝑁𝑟

∑
𝒓

𝑒𝑖𝒌𝒓𝐶(𝒓, 𝑛1, 𝑛2)
(4.1)

Where the sums go over the unit cells of the finite size Bravais lattice, 𝑁𝑟 is the number of unit cells and 𝑛1, 𝑛2
denominate the orbitals within a unit cell.
Each observable produces a set of members in the results, these are for example the ones for the equal-time Green’s
function:

for i in item.keys():
if i.startswith('Green_eq'):

print(i, np.shape(item[i]))

Green_eqK (1, 1, 36)
Green_eqK_err (1, 1, 36)
Green_eqK_sum (36,)
Green_eqK_sum_err (36,)
Green_eqR (1, 1, 36)
Green_eqR_err (1, 1, 36)
Green_eqR_sum (36,)
Green_eqR_sum_err (36,)
Green_eq_lattice ()

Members ending in K, K_err, R and R_err correspond to Eq. (4.1) and their errors. They have the shape
(𝑁orb, 𝑁orb, 𝑁𝑟), where𝑁orb is the number of orbitals per unit cell. The objects ending in_sum have been traced over
the orbital degrees of freedom. To correctly interpret the index over the unit cells, the member ending in _lattice
is a dictionary containing the parameters for creating a Bravais lattice object py_alf.Lattice:

100 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

item['Green_eq_lattice']

{'L1': array([6., 0.]),
'L2': array([0., 6.]),
'a1': array([1., 0.]),
'a2': array([0., 1.])}

from py_alf import Lattice
latt = Lattice(item['Green_eq_lattice'])

Here is, for example, the equal-time Greens function at 𝒌 = (𝜋, 𝜋) with its error:
n = latt.k_to_n([np.pi, np.pi])
print(item.Green_eqK_sum[n], item.Green_eqK_sum_err[n])

0.06526692607779117 0.0013046070203645834

The lattice object offers functions for conveniently plotting correlation functions in real and momentum space. Below,
we plot the Spin-Spin correlations in real and momentum space, showing signs of antiferromagnetic order.

latt.plot_r(item.SpinZ_eqR_sum)

latt.plot_k(item.SpinZ_eqK_sum)

4.2. Usage 101

Dissertation Jonas Schwab

The plain text result files ending in _K and _R contain momentum and real-space resolved correlations, respectively.
Here is an excerpt from the Greens function in momentum space:

!head -n 3 ALF_data/Hubbard/res/Green_eq_K

kx ky (0, 0) ␣
↪trace over n_orb

-2.09440 -2.09440 1.4417820888e-01 6.0737564927e-03 1.
↪4417820888e-01 6.0737564927e-03

-2.09440 -1.04720 1.0106239637e+00 1.1329334950e-02 1.
↪0106239637e+00 1.1329334950e-02

Where (0, 0) refers to the orbital indices. Since there is only one orbital per unit cell, this is the only combination
and identical to the trace over all orbitals. The first two columns represent the coordinates, followed by alternating
expectation values and standard errors.

Time-displaced correlation functions

The structure for time-displaced correlation functions is very similar to equal-time correlations, but by default only
the trace over the orbital degrees of freedom is stored. These are the results for the time-displaced Green function:

for i in item.keys():
if i.startswith('Green_tau'):

print(i, np.shape(item[i]))

Green_tauK (51, 36)
Green_tauK_err (51, 36)
Green_tauR (51, 36)
Green_tauR_err (51, 36)
Green_tau_lattice ()

Here we plot the time-displaced Greens function at 𝒓 = 0:
Create figure with axis labels and logscale on y-axis
fig, ax = plt.subplots()
ax.set_xlabel(r'τ')
ax.set_ylabel(r'$G(r=0, \tau)$')
ax.set_yscale('log')

(continues on next page)

102 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
Create lattice object
latt = Lattice(item['Green_tau_lattice'])

Get index corresponding to r=0
n = latt.r_to_n([0, 0])

Plot data
ax.errorbar(

item.dtau*range(len(item.Green_tauR[:, n])),
item.Green_tauR[:, n],
item.Green_tauK_err[:, n]

);

Again, plain text results data are available in the folder res. There is a separate folder for each 𝒌-point and the data
for 𝒓 = 0:
ls ALF_data/Hubbard/res/Green_tau

0.00_0.00/ 1.05_0.00/ 1.05_-2.09/ -2.09_1.05/ -2.09_3.14/ 3.14_3.14/
0.00_-1.05/ -1.05_-1.05/ 1.05_2.09/ 2.09_-1.05/ 2.09_3.14/ R0
0.00_1.05/ -1.05_1.05/ -1.05_3.14/ 2.09_1.05/ 3.14_0.00/
0.00_-2.09/ 1.05_-1.05/ 1.05_3.14/ -2.09_-2.09/ 3.14_-1.05/
0.00_2.09/ 1.05_1.05/ -2.09_0.00/ -2.09_2.09/ 3.14_1.05/
0.00_3.14/ -1.05_-2.09/ 2.09_0.00/ 2.09_-2.09/ 3.14_-2.09/
-1.05_0.00/ -1.05_2.09/ -2.09_-1.05/ 2.09_2.09/ 3.14_2.09/

The data is in the following format with tree columns: 𝜏 , expectation value and error:
!head ALF_data/Hubbard/res/Green_tau/0.00_0.00/dat

0.0000000 0.03348685 0.00547912
0.1000000 0.01686925 0.00585814
0.2000000 0.01793592 0.00935758
0.3000000 0.01575110 0.00906065
0.4000000 0.01096207 0.00657646
0.5000000 0.00372588 0.00710389
0.6000000 0.01155079 0.00842672
0.7000000 0.00473281 0.01066049
0.8000000 0.00177665 0.00989675
0.9000000 0.00691428 0.00589819

4.2. Usage 103

Dissertation Jonas Schwab

4.2.3.2 Custom/Derived Observables

The previous section showed how to use the observables defined directly in the ALF simulation, but one often needs
quantities derived from these. pyALF offers a convenient way for getting results for such derived observables, in-
cluding a way to check for warmup and autocorrelation issues (more on the latter in the next section).
As usual, we start with some imports:

Enable Matplotlib Jupyter Widget Backend
%matplotlib widget

import numpy as np # Numerical libary
import matplotlib.pyplot as plt # Plotting library
from py_alf.analysis import analysis # Analysis function
from py_alf.utils import find_sim_dirs # Function for finding QMC bins
from py_alf.ana import load_res # Function for loading analysis results

Create list with directories to analyze:

dirs = find_sim_dirs()
dirs

['./ALF_data/Hubbard',
'./ALF_data/Hubbard_L1=4_L2=4_U=1.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=2.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=3.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=4.0',
'./ALF_data/Hubbard_Square',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1',
'./ALF_data_back/Hubbard_Square']

The custom observables are defined in a Python dictionary, where the keys are the names of the new observables.
The value is another dictionary in the format:

{'needs': some_list,
'function': some_function,
'kwargs': some_dict,}

Wheresome_list is a list of observable names, this can be any combination of scalar, equal-time, or time-displaced
observables. They are being read by py_alf.ana.ReadObs. These Jackknife bins as well as kwargs from
some_dict are handed to some_function with a separate call for each bin. Currently, only scalars and 1d
arrays are supported as return value of some_function. We go through some examples to make this procedure
clearer.
We start with an empty dictionary, which will hold all the custom observable definitions:

custom_obs = {}

The first custom observable will just be the square of the energy. For this, we define a function taking three arguments,
which correspond to one jackknifed bin from py_alf.ana.read_scal():

• obs: Array of observable values
• sign: Float
• N_obs: Length of obs, in this case 1.

The next step is to add an entry to custom_obs. The name of the new observable shall be E_squared. It needs the
observable Ener_scal, the function defined previously, and we don’t hand over any keyword arguments.

104 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

def obs_squared(obs, sign, N_obs):
"""Square of a scalar observable.

obs.shape = (N_obs,)
"""
return obs[0]**2 / sign

Energy squared
custom_obs['E_squared']= {

'needs': ['Ener_scal'],
'function': obs_squared,
'kwargs': {}

}

Another custom observable shall be the potential energy divided by kinetic energy. The approach is similar to before,
except that this now uses two observables Pot_scal and Kin_scal:

def E_pot_kin(E_pot_obs, E_pot_sign, E_pot_N_obs,
E_kin_obs, E_kin_sign, E_kin_N_obs):

"""Ratio of two scalar observables, first observable divided by second."""
return E_pot_obs/E_kin_obs / (E_pot_sign/E_kin_sign)

Potential Energy / Kinetic Energy
custom_obs['E_pot_kin']= {

'needs': ['Pot_scal', 'Kin_scal'],
'function': E_pot_kin,
'kwargs': {}

}

Finally, we want to calculate some correlation ratios. A correlation ratio is a renormalisation group invariant quantity,
that can be a powerful tool for identifying ordered phases and phase transitions. It is defined as:

𝑅(𝑂, 𝒌∗) = 1 − 𝑂(𝒌∗ + 𝜹)
𝑂(𝒌∗) (4.2)

Where 𝑂(𝒌) is a correlation function that has a divergence at 𝒌 = 𝒌∗ in the ordered phase and 𝜹 scales with 1/𝐿,
where 𝐿 is the linear system size. A usual choice for 𝜹 is the smallest 𝒌 on the finite-sized Bravais lattice. With these
properties, 𝑅(𝑂, 𝒌∗) will take only one of two values in the thermodynamic limit: 0 in the unordered phase and 1 in
the ordered phase.
The above can be generalized, to an average over multiple singular points 𝒌𝑖 and distances from those points 𝜹𝑗,
which results in:

𝑅 = 1
𝑁𝑘

𝑁𝑘

∑
𝑖=1

⎛⎜
⎝

1 −
1

𝑁𝛿
∑𝑁𝛿

𝑗=1 𝑂(𝒌𝑖 + 𝜹𝑗)
𝑂(𝒌𝑖)

⎞⎟
⎠

(4.3)

Furthermore, the correlation function might have an orbital structure to be considered:

𝑂(𝒌) = ∑
𝑛,𝑚

�̃�(𝒌)𝑛,𝑚𝑀𝑛,𝑚 (4.4)

All in all, this can be expressed in a function like this:

def R_k(obs, back, sign, N_orb, N_tau, dtau, latt,
ks=[(0., 0.)], mat=None, NNs=[(1, 0), (0, 1), (-1, 0), (0, -1)]):

"""Calculate correlation ratio, an RG-invariant quantity derived from
a correlation function.

Parameters

obs : array of shape (N_orb, N_orb, N_tau, latt.N)

Correlation function, the background is already subtracted.

(continues on next page)

4.2. Usage 105

Dissertation Jonas Schwab

(continued from previous page)
back : array of shape (N_orb,)

Background of Correlation function.
sign : float

Monte Carlo sign.
N_orb : int

Number of orbitals per unit cell.
N_tau : int

Number of imaginary time slices. 1 for equal-time correlations.
dtau : float

Imaginary time step.
latt : py_alf.Lattice

Bravais lattice object.
ks : list of k-points, default=[(0., 0.)]

Singular points of the correlation function in the intended order.
mat : array of shape (N_orb, N_orb), default=None

Orbital structure of the order parameter. Default: Trace over orbitals.
NNs : list of tuples, default=[(1, 0), (0, 1), (-1, 0), (0, -1)]

Deltas in terms of primitive k-vectors of the Bravais lattice.
"""
if mat is None:

mat = np.identity(N_orb)
out = 0
for k in ks:

n = latt.k_to_n(k)

J1 = (obs[..., n].sum(axis=-1) * mat).sum()
J2 = 0
for NN in NNs:

i = latt.nnlistk[n, NN[0], NN[1]]
J2 += (obs[..., i].sum(axis=-1) * mat).sum() / len(NNs)

out += (1 - J2/J1)

return out / len(ks)

This function works for both equal-time and time-displaced correlations. The first 7 arguments (obs, back,
sign, N_orb, N_tau, dtau, latt) are supplied by analysis() if a correlation function is requested
in needs. The optional keyword arguments specify the singular 𝒌 points, the orbital structure and 𝜹𝑗 to be considered.
Correlation ratios for ferromagnetic and antiferromagnetic order can now be defined with:

RG-invariant quantity for ferromagnetic order
custom_obs['R_Ferro']= {

'needs': ['SpinT_eq'],
'function': R_k,
'kwargs': {'ks': [(0., 0.)]}

}

RG-invariant quantity for antiferromagnetic order
custom_obs['R_AFM']= {

'needs': ['SpinT_eq'],
'function': R_k,
'kwargs': {'ks': [(np.pi, np.pi)]}

}

def obs_k(obs, back, sign, N_orb, N_tau, dtau, latt,
ks=[(0., 0.)], mat=None):

"""Mean of correlation function at one, or multiple k-points.

Calculates integral over tau (=susceptibility) if time-displaced
correlation is supplied.

(continues on next page)

106 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
Parameters

obs : array of shape (N_orb, N_orb, N_tau, latt.N)

Correlation function, the background is already subtracted.
back : array of shape (N_orb,)

Background of Correlation function.
sign : float

Monte Carlo sign.
N_orb : int

Number of orbitals per unit cell.
N_tau : int

Number of imaginary time slices. 1 for equal-time correlations.
dtau : float

Imaginary time step.
latt : py_alf.Lattice

Bravais lattice object.
ks : list of k-points, default=[(0., 0.)]
mat : array of shape (N_orb, N_orb), default=None

Orbital structure. Default: Trace over orbitals.
"""
if mat is None:

mat = np.identity(N_orb)
out = 0
for k in ks:

n = latt.k_to_n(k)

if N_tau == 1:
out += (obs[:, :, 0, n] * mat).sum()

else:
out += (obs[..., n].sum(axis=-1) * mat).sum()*dtau

return out / len(ks)

Correlation of Spin z-component at k=(pi, pi)
custom_obs['SpinZ_pipi']= {

'needs': ['SpinZ_eq'],
'function': obs_k,
'kwargs': {'ks': [(np.pi, np.pi)]}

}

Correlation of Spin x+y-component at k=(pi, pi)
custom_obs['SpinXY_pipi']= {

'needs': ['SpinXY_eq'],
'function': obs_k,
'kwargs': {'ks': [(np.pi, np.pi)]}

}

Correlation of total Spin at k=(pi, pi)
custom_obs['SpinXYZ_pipi']= {

'needs': ['SpinT_eq'],
'function': obs_k,
'kwargs': {'ks': [(np.pi, np.pi)]}

}

The same definitions for custom_obs are also written in the local file custom_obs.py to be used in further
sections.
To now analyze with these custom observables, the dictionary has to be handed over as a keyword argument to
analysis(). The analysis skips a directory by default if the QMC bins file data.h5 and the parameter file
parameters are both older than res.pkl, which is the case since res.pkl has been freshly created in the
previous section. Therefore, we use the option always=True to overwrite this behavior. The printout has again
been truncated for brevity.

4.2. Usage 107

Dissertation Jonas Schwab

for directory in dirs:
analysis(directory, custom_obs=custom_obs, always=True)

Analyzing ./ALF_data/Hubbard
/home/jonas/dissertation/jb/chap4_pyalf/usage
Custom observables:
custom E_squared ['Ener_scal']
custom E_pot_kin ['Pot_scal', 'Kin_scal']
custom R_Ferro ['SpinT_eq']
custom R_AFM ['SpinT_eq']
custom SpinZ_pipi ['SpinZ_eq']
custom SpinXY_pipi ['SpinXY_eq']
custom SpinXYZ_pipi ['SpinT_eq']
Scalar observables:
Ener_scal
Kin_scal
Part_scal
Pot_scal
Histogram observables:
Equal time observables:
Den_eq
Green_eq
SpinT_eq
SpinXY_eq
SpinZ_eq
Time displaced observables:
Den_tau
Green_tau
SpinT_tau
SpinXY_tau
SpinZ_tau
Analyzing ./ALF_data/Hubbard_L1=4_L2=4_U=1.0
/home/jonas/dissertation/jb/chap4_pyalf/usage
Custom observables:
...
...
...

The results are loaded the same way as in the previous section:

res = load_res(dirs)

./ALF_data/Hubbard
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=1.0
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=2.0
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=3.0
No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=4.0
No orbital locations saved.
./ALF_data/Hubbard_Square
No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0
No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1
No orbital locations saved.
./ALF_data_back/Hubbard_Square
No orbital locations saved.

Access to the values is analogues to scalar observables:

108 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

Create figure with two axes and axis labels
fig, (ax1, ax2) = plt.subplots(2, 1,

sharex=True,
constrained_layout=True)

ax1.set_ylabel(r'$E_{\rm pot} / E_{\rm kin}$')
ax2.set_ylabel(r'$R_{\rm AFM}$')
ax2.set_xlabel(r'Hubbard interaction U')

Select only rows with l1==4 and sort by ham_u
df = res[res.l1 == 4].sort_values(by='ham_u')

Plot data
ax1.errorbar(df.ham_u, df.E_pot_kin, df.E_pot_kin_err);
ax2.errorbar(df.ham_u, df.R_AFM, df.R_AFM_err);

4.2.3.3 Checking warmup and autocorrelation times

Two common challenges in Monte Carlo studies are ensuring that the measured bins represent equilibrated config-
urations and that different bins are statistically independent. In this section, we will briefly explain these issues and
present the tools pyALF offers for dealing with them.

4.2.3.3.1 Preparations

As a first step, we use the same import as in previous sections.

Enable Matplotlib Jupyter Widget Backend
%matplotlib widget

import numpy as np # Numerical libary
import matplotlib.pyplot as plt # Plotting library
from py_alf.analysis import analysis # Analysis function
from py_alf.utils import find_sim_dirs # Function for finding QMC bins
from py_alf.ana import load_res # Function for loading analysis results

We also import the functions py_alf.check_warmup() and py_alf.check_rebin(), which play the
main role in this section.

from py_alf import check_warmup, check_rebin

4.2. Usage 109

Dissertation Jonas Schwab

Finally, from the local file custom_obs.py, we import the same custom_obs defined in the previous section.

from custom_obs import custom_obs

For demonstration purposes, we run a simulation with very small bins.

from py_alf import ALF_source, Simulation
sim = Simulation(

ALF_source(),
'Hubbard',
{

Model specific parameters
'L1': 4,
'L2': 4,
'Ham_U': 5.0,
QMC parameters
'Nbin': 5000,
'Nsweep': 5,
'Ltau': 0,

},
)
sim.compile()
sim.run()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters
filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_

↪Kondo_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_

↪Hubbard_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90 Hamiltonians/

↪Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_

↪read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_

↪Z2_Matter_read_write_parameters.F90
filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/

↪Hamiltonian_Spin_Peierls_read_write_parameters.F90
Compiling program modules
Link program
Done.
Prepare directory "/home/jonas/dissertation/jb/chap4_pyalf/usage/ALF_data/

↪Hubbard_L1=4_L2=4_U=5.0" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

We set the directories to be considered.

110 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

dirs = find_sim_dirs()
dirs

['./ALF_data/Hubbard',
'./ALF_data/Hubbard_L1=4_L2=4_U=1.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=2.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=3.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=4.0',
'./ALF_data/Hubbard_L1=4_L2=4_U=5.0',
'./ALF_data/Hubbard_Square',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1',
'./ALF_data_back/Hubbard_Square']

4.2.3.3.2 Check warmup

AMonte Carlo simulation creates a time series of configurations through stochastic updates. Usually, measurements
from a number of updates get combined in one so-called bin. In the case of ALF, Nsweep sweeps create one
bin of measurements (for more details on updating procedures we refer to the ALF documentation38). Usually, the
simulation starts in a non-optimal state and it takes some time to reach equilibrium. Bins from this “warming up”
period should be dismissed before calculating results. This is achieved by setting the variable N_skip in the file
parameters, which will make the analysis omit the first N_skip bins.

Warning

Different observables can have different warmup and autocorrelation times. For example, charge degrees of
freedom may equilibrate much faster than spin degrees of freedom. Or a sum of observables might have much
shorter autocorrelation times than an individual observable, e.g. the total spin versus one spin component.

To judge the correct value for N_skip, pyALF offers the function check_warmup(), which plots the time series
of bins for a given list of scalar and custom observables. It can be used with the previous simulations as:

warmup_widget = check_warmup(
dirs,
['Ener_scal', 'Kin_scal', 'Pot_scal',
'E_pot_kin', 'R_Ferro', 'R_AFM',
'SpinZ_pipi', 'SpinXY_pipi', 'SpinXYZ_pipi'],
custom_obs=custom_obs, gui='ipy'

)

The first argument is a list of directories containing simulations, the second argument specifies which observables to
plot, the keyword argument custom_obs is needed, when plotting custom observables, e.g. E_pot_kin and gui
specifies which GUI framework to use. With gui='ipy', the function returns a Jupyter Widget39, which allows
to seamlessly work within Jupyter. Another option would be gui='tk', which opens a separate window using
tkinter40. The latter option might be suitable when working directly from a shell.
The variable N_skip can be directly changed in the GUI, which automatically updates the file parameters.

warmup_widget

38 https://git.physik.uni-wuerzburg.de/ALF/ALF/-/jobs/artifacts/master/raw/Documentation/doc.pdf?job=create_doc
39 https://ipywidgets.readthedocs.io
40 https://docs.python.org/3/library/tkinter.html#module-tkinter

4.2. Usage 111

https://git.physik.uni-wuerzburg.de/ALF/ALF/-/jobs/artifacts/master/raw/Documentation/doc.pdf?job=create_doc
https://ipywidgets.readthedocs.io
https://docs.python.org/3/library/tkinter.html#module-tkinter

Dissertation Jonas Schwab

4.2.3.3.3 Check rebin

When estimating statistical errors, the analysis assumes different bins to be statistically independent. As a result, one
bin must span over enough updates to generate statically independent configurations, or in other words, a bin must
be larger than the autocorrelation time. Otherwise the statistical errors will be underestimated. To address this issue,
the analysis employs so-called rebinning, which combines N_rebin bins into one new bin. The pyALF function
check_rebin() helps in determining the correct N_rebin. It plots the errors of the chosen observables against
N_rebin. With enough statistics, one should see growing errors with increasing N_rebin until a saturation point is
reached, this saturation point marks a suitable value for N_rebin. The usage of check_rebin() is very similar
to check_warmup().

rebin_widget = check_rebin(
dirs,
['Ener_scal', 'Kin_scal', 'Pot_scal',
'E_pot_kin', 'R_Ferro', 'R_AFM',
'SpinZ_pipi', 'SpinXY_pipi', 'SpinXYZ_pipi'],
custom_obs=custom_obs, gui='ipy'

)

112 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

Below, we can see how different observables have different autocorrelation times. While the error of the kinetic
energy saturates already at 𝑁rebin = 3, the correlations of the z component of the spin at (𝜋, 𝜋) (SpinZ_pipi)
need 𝑁rebin ∼ 40. For the correlations of the total spin (SpinXYZ_pipi), on the other hand, 𝑁rebin = 1 is
sufficient.
The improvement from SpinZ_pipi to SpinXYZ_pipi is a good example for the concept of an improved
estimator: The simulated Hubbard model is SU(2) symmetric, therefore correlations of the x, y and z components of
the spin are equivalent, but with the chosen parameter Mz=True (cf. Section 4.2.2) the auxiliary field couples to the
z component of the spin. As a result, the SU(2) symmetry is broken for an individual auxiliary field configuration, but
restored by sampling the field configurations. Therefore, measuring the spin correlations through the z component,
the x-y plane, or the full spin are in principle equivalent. But the latter option produces the most precise results and
has the shortest autocorrelation times, because it explicitly restores the SU(2) symmetry instead of “waiting” for the
sampling to do that.
Furthermore, the ferromagnetic correlation ratio 𝑅Ferro doesn’t seem to converge at all in the considered range of
𝑁rebin. This is connected to the fact that the system is not close the ferromagnetic order and therefore 𝑅Ferro is a bad
observable.

rebin_widget

The next section will also show options for an improved estimator by employing symmetry operations on the Bravais

4.2. Usage 113

Dissertation Jonas Schwab

lattice.

4.2.3.4 Symmetrization of correlations on the lattice

The pyALF analysis offers an option to symmetrize correlation functions, by averaging over a list of symmetry oper-
ations on the Bravais lattice. This feature is meant to be used as an improved estimator, meaning to explicitly restore
symmetries of the model lost due to imperfect sampling, which increases the quality of the data.
For this feature, the user has to supply a list of functions 𝑓𝑖, taking as arguments an instance of py_alf.Lattice
and an integer corresponding to a 𝒌-point of the Bravais lattice and returning an integer corresponding to the trans-
formed 𝒌-point of the Bravais lattice. The analysis then averages the correlation over all transformations:

̃𝐶(𝑛𝒌) = 1
𝑁

𝑁
∑
𝑖=1

𝐶 (𝑓𝑖(𝑙𝑎𝑡𝑡, 𝑛𝒌))

Note

This symmetrization feature does not affect custom observables, but only the default analysis. Improved estimators
would have to be included directly in the definition of custom observables.

The demonstration begins, as usual, with some imports:

Enable Matplotlib Jupyter Widget Backend
%matplotlib widget

import numpy as np # Numerical libary
import matplotlib.pyplot as plt # Plotting library
from py_alf.analysis import analysis # Analysis function
from py_alf.ana import load_res # Function for loading analysis results
from py_alf import Lattice # Defines Bravais lattice object
from custom_obs import custom_obs # Custom observable specifications

from local file custom_obs.py

The Hubbard model on a square lattice possesses a fourfold rotation symmetry (= 𝐶4 symmetry). To restore this
symmetry, a list of all possible realizations of it has to be handed to the analysis. These are: rotation by 0 or 2𝜋
(= identity), rotation by 𝜋/2, rotation by 𝜋 and rotation by 3𝜋/2.
Define list of transformations (Lattice, i) -> new_i
Default analysis will average over all listed elements
def sym_c4_0(latt, i): return i
def sym_c4_1(latt, i): return latt.rotate(i, np.pi*0.5)
def sym_c4_2(latt, i): return latt.rotate(i, np.pi)
def sym_c4_3(latt, i): return latt.rotate(i, np.pi*1.5)

sym_c4 = [sym_c4_0, sym_c4_1, sym_c4_2, sym_c4_3]

We set the directory to be analyzed:

directory = './ALF_data/Hubbard'

We analyze without symmetrization and load results.

analysis(directory, symmetry=None, custom_obs=custom_obs, always=True)
res_nosym = load_res([directory]).iloc[0]

Analyzing ./ALF_data/Hubbard
/home/jonas/dissertation/jb/chap4_pyalf/usage
Custom observables:

(continues on next page)

114 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
custom E_squared ['Ener_scal']
custom E_pot_kin ['Pot_scal', 'Kin_scal']
custom R_Ferro ['SpinT_eq']
custom R_AFM ['SpinT_eq']
custom SpinZ_pipi ['SpinZ_eq']
custom SpinXY_pipi ['SpinXY_eq']
custom SpinXYZ_pipi ['SpinT_eq']
Scalar observables:
Ener_scal
Kin_scal
Part_scal
Pot_scal
Histogram observables:
Equal time observables:
Den_eq
Green_eq
SpinT_eq
SpinXY_eq
SpinZ_eq
Time displaced observables:
Den_tau
Green_tau
SpinT_tau
SpinXY_tau
SpinZ_tau
./ALF_data/Hubbard
No orbital locations saved.

Analyze with symmetrization and load results.

analysis(directory, symmetry=sym_c4, custom_obs=custom_obs, always=True)
res_sym = load_res([directory]).iloc[0]

Analyzing ./ALF_data/Hubbard
/home/jonas/dissertation/jb/chap4_pyalf/usage
Custom observables:
custom E_squared ['Ener_scal']
custom E_pot_kin ['Pot_scal', 'Kin_scal']
custom R_Ferro ['SpinT_eq']
custom R_AFM ['SpinT_eq']
custom SpinZ_pipi ['SpinZ_eq']
custom SpinXY_pipi ['SpinXY_eq']
custom SpinXYZ_pipi ['SpinT_eq']
Scalar observables:
Ener_scal
Kin_scal
Part_scal
Pot_scal
Histogram observables:
Equal time observables:
Den_eq
Green_eq
SpinT_eq
SpinXY_eq
SpinZ_eq
Time displaced observables:
Den_tau
Green_tau
SpinT_tau
SpinXY_tau
SpinZ_tau

(continues on next page)

4.2. Usage 115

Dissertation Jonas Schwab

(continued from previous page)
./ALF_data/Hubbard
No orbital locations saved.

We now compare results for the points (𝜋, 𝜋) + 𝒃1 and (𝜋, 𝜋) + 𝒃2, where 𝒃1 = (2𝜋/𝐿, 0) and 𝒃2 = (0, 2𝜋/𝐿) are
the primitive vectors of the Bravais lattice in k-space, with and without symmetrization.

latt = Lattice(res_nosym['SpinT_eq_lattice'])
n = latt.k_to_n((np.pi, np.pi))
n1 = latt.nnlistk[n, -1, 0]
n2 = latt.nnlistk[n, 0, -1]

print(f"""Spin-Spin correlations:
Without symmetrization:
At k={latt.k[n1]}: {res_nosym.SpinT_eqK_sum[n1]:.2f} +- {res_nosym.SpinT_eqK_sum_

↪err[n1]:.2f}
At k={latt.k[n2]}: {res_nosym.SpinT_eqK_sum[n2]:.2f} +- {res_nosym.SpinT_eqK_sum_

↪err[n2]:.2f}

With symmetrization:
At k={latt.k[n1]}: {res_sym.SpinT_eqK_sum[n1]:.2f} +- {res_sym.SpinT_eqK_sum_

↪err[n1]:.2f}
At k={latt.k[n2]}: {res_sym.SpinT_eqK_sum[n2]:.2f} +- {res_sym.SpinT_eqK_sum_

↪err[n2]:.2f}
""")

Spin-Spin correlations:
Without symmetrization:
At k=[2.0943951 3.14159265]: 1.07 +- 0.04
At k=[3.14159265 2.0943951]: 1.14 +- 0.07

With symmetrization:
At k=[2.0943951 3.14159265]: 1.10 +- 0.05
At k=[3.14159265 2.0943951]: 1.10 +- 0.05

latt.plot_k(res_nosym.SpinT_eqK_sum)
plt.plot(*latt.k[n1], 'or')
plt.plot(*latt.k[n2], 'or')

[<matplotlib.lines.Line2D at 0x7f6da8c85f70>]

116 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

latt.plot_k(res_sym.SpinT_eqK_sum)
plt.plot(*latt.k[n1], 'or')
plt.plot(*latt.k[n2], 'or')

[<matplotlib.lines.Line2D at 0x7f6da097a2a0>]

4.2.4 Command line tools

In addition to the Python objects presented in previous sections, pyALF offers a set of scripts that make it easy
to leverage pyALF from a Unix shell (e.g. Bash or zsh). They are located in the folder py_alf/cli and, as
mentioned in Section 4.1, it is recommended to add this folder to the $PATH environment variable, to conveniently
use the scripts:

export PATH="/path/to/pyALF/py_alf/cli:$PATH"

The list of all command line tools can be found in the reference. Out of those, this section will only introduce two
more elaborate scripts, namely alf_run.py and alf_postprocess.py.
When starting a code line in Jupyter with an exclamation mark, the line will be interpreted as a shell command. We
will use this feature to demonstrate the shell tools.

4.2.4.1 alf_run.py

The script alf_run.py enables most of the features displayed in Section 4.2.2 to be used directly from the shell.
The help text lists all possible arguments:

!alf_run.py -h

usage: alf_run.py [-h] [--alfdir ALFDIR] [--sims_file SIMS_FILE]
[--branch BRANCH] [--machine MACHINE] [--mpi]
[--n_mpi N_MPI] [--mpiexec MPIEXEC]
[--mpiexec_args MPIEXEC_ARGS] [--do_analysis]

Helper script for compiling and running ALF.

optional arguments:
-h, --help show this help message and exit

(continues on next page)

4.2. Usage 117

Dissertation Jonas Schwab

(continued from previous page)
--alfdir ALFDIR Path to ALF directory. (default: os.getenv('ALF_DIR',

'./ALF')
--sims_file SIMS_FILE

File defining simulations parameters. Each line starts
with the Hamiltonian name and a comma, after wich
follows a dict in JSON format for the parameters. A
line that says stop can be used to interrupt.
(default: './Sims')

--branch BRANCH Git branch to checkout.
--machine MACHINE Machine configuration (default: 'GNU')
--mpi mpi run
--n_mpi N_MPI number of mpi processes (default: 4)
--mpiexec MPIEXEC Command used for starting a MPI run (default:

'mpiexec')
--mpiexec_args MPIEXEC_ARGS

Additional arguments to MPI executable.
--do_analysis, --ana Run default analysis after each simulation.

For example, to run a series of four different simulations of the Kondo model, the first step is to create a file specifying
the parameters, with one line per simulation:

!cat Sims_Kondo

Kondo, {"L1": 4, "L2": 4, "Ham_JK": 0.5}
Kondo, {"L1": 4, "L2": 4, "Ham_JK": 1.0}
Kondo, {"L1": 4, "L2": 4, "Ham_JK": 1.5}
Kondo, {"L1": 4, "L2": 4, "Ham_JK": 2.0}

Then, one can execute alf_run.py with options as desired, the script automatically recompiles ALF for each
simulation. For understanding some of the options, Section 4.2.2 might help. The following printout is truncated for
brevity.

!alf_run.py --sims_file ./Sims_Kondo --mpi --n_mpi 4 --mpiexec orterun

Number of simulations: 4
Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries
ar: creating modules_90.a
ar: creating libqrref.a
Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters
filename: Hamiltonians/Hamiltonian_Kondo_smod.F90
filename: Hamiltonians/Hamiltonian_Hubbard_smod.F90
filename: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90
filename: Hamiltonians/Hamiltonian_tV_smod.F90
filename: Hamiltonians/Hamiltonian_LRC_smod.F90
filename: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90
Compiling program modules
Link program
Done.
Prepare directory "/scratch/pyalf-docu/doc/source/usage/ALF_data/Kondo_L1=4_

↪L2=4_JK=0.5" for Monte Carlo run.
Create new directory.
Run /home/jschwab/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2021 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL

(continues on next page)

118 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
This is free software, and you are welcome to redistribute it under certain␣
↪conditions.
No initial configuration

Compiling ALF...
...
...
...

4.2.4.2 alf_postprocess.py

The script alf_postprocess.py enables most of the features discussed in Section 4.2.3, except for plotting
capabilities, to be used directly from the shell. The help text lists all possible arguments:

!alf_postprocess.py -h

usage: alf_postprocess.py [-h] [--check_warmup] [--check_rebin]
[-l CHECK_LIST [CHECK_LIST ...]] [--do_analysis]
[--always] [--gather] [--no_tau]
[--custom_obs CUSTOM_OBS] [--symmetry SYMMETRY]
[directories ...]

Script for postprocessing Monte Carlo bins.

positional arguments:
directories Directories to analyze. If empty, analyzes all

directories containing file "data.h5" it can find.

optional arguments:
-h, --help show this help message and exit
--check_warmup, --warmup

Check warmup.
--check_rebin, --rebin

Check rebinning for controlling autocorrelation.
-l CHECK_LIST [CHECK_LIST ...], --check_list CHECK_LIST [CHECK_LIST ...]

List of observables to check for warmup and rebinning.
--do_analysis, --ana Do analysis.
--always Do not skip analysis if parameters and bins are older

than results.
--gather Gather all analysis results in one file named

"gathered.pkl", representing a pickled pandas
DataFrame.

--no_tau Skip time displaced correlations.
--custom_obs CUSTOM_OBS

File that defines custom observables. This file has to
define the object custom_obs, needed by
py_alf.analysis. (default: os.getenv("ALF_CUSTOM_OBS",
None))

--symmetry SYMMETRY, --sym SYMMETRY
File that defines lattice symmetries. This file has to
define the object symmetry, needed by py_alf.analysis.
(default: None))

To use the symmetrization feature, one needs a file defining the object symmetry, similar to the already used file
custom_obs.py defining custom_obs.

!cat sym_c4.py

"""Define C_4 symmetry (=fourfold rotation) for pyALF analysis."""
from math import pi

(continues on next page)

4.2. Usage 119

Dissertation Jonas Schwab

(continued from previous page)

Define list of transformations (Lattice, i) -> new_i
Default analysis will average over all listed elements
def sym_c4_0(latt, i): return i
def sym_c4_1(latt, i): return latt.rotate(i, pi*0.5)
def sym_c4_2(latt, i): return latt.rotate(i, pi)
def sym_c4_3(latt, i): return latt.rotate(i, pi*1.5)

symmetry = [sym_c4_0, sym_c4_1, sym_c4_2, sym_c4_3]

To analyze the results from the Kondo model and gather them all in one file gathered.pkl, we execute the
following command. The printout has again been truncated.

!alf_postprocess.py --custom_obs custom_obs.py --symmetry sym_c4.py --ana --
↪gather ALF_data/Kondo*

Analyzing ALF_data/Kondo_L1=4_L2=4_JK=0.5
/scratch/pyalf-docu/doc/source/usage
Custom observables:
custom E_squared ['Ener_scal']
custom E_pot_kin ['Pot_scal', 'Kin_scal']
custom SpinZ_pipi ['SpinZ_eq']
Scalar observables:
Constraint_scal
Ener_scal
Kin_scal
Part_scal
Pot_scal
Histogram observables:
Equal time observables:
Den_eq
Dimer_eq
Green_eq
SpinZ_eq
Time displaced observables:
Den_tau
Dimer_tau
Green_tau
Greenf_tau
SpinZ_tau
Analyzing ALF_data/Kondo_L1=4_L2=4_JK=1.0
/scratch/pyalf-docu/doc/source/usage
...
...
...
ALF_data/Kondo_L1=4_L2=4_JK=0.5
ALF_data/Kondo_L1=4_L2=4_JK=1.0
ALF_data/Kondo_L1=4_L2=4_JK=1.5
ALF_data/Kondo_L1=4_L2=4_JK=2.0

The data from gathered.pkl can, for example, be read and plotted like this:

Import modules
import pandas as pd
import matplotlib.pyplot as plt

Load pickled DataFrame
res = pd.read_pickle('gathered.pkl')

Create figure with axis labels
(continues on next page)

120 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

(continued from previous page)
fig, ax = plt.subplots()
ax.set_xlabel(r'Kondo interaction J_K')
ax.set_ylabel(r'Energy')

Plot data
ax.errorbar(res.ham_jk, res.Ener_scal0, res.Ener_scal0_err);

4.3 Reference

This is a reference of pyALF’s features, most of the information in this section, except for the ones on the Command
line tools, are also accessible through the Python builtin help()41.
Table of contents

• Class ALF_source

• Class Simulation

• High-level analysis functions

• Class Lattice

• Low-level analysis functions

• Utility functions

• Command line tools
41 https://docs.python.org/3/library/functions.html#help

4.3. Reference 121

https://docs.python.org/3/library/functions.html#help

Dissertation Jonas Schwab

4.3.1 Class ALF_source

class py_alf.ALF_source(alf_dir=None, branch=None,
url='https://git.physik.uni-wuerzburg.de/ALF/ALF.git')

Objet representing ALF source code.
Parameters

alf_dir
[path-like object, default=os.getenv(‘ALF_DIR’, ‘./ALF’)] Directory containing the ALF
source code. If the directory does not exist, the source code will be fetched from a server.
Defaults to environment variable $ALF_DIR if defined, otherwise to ‘./ALF’.

branch
[str, optional] If specified, this will be checked out by git.

url
[str, default=’https://git.physik.uni-wuerzburg.de/ALF/ALF.git’] Address from where to
clone ALF if alf_dir does not exist.

get_default_params(ham_name, include_generic=True)
Return full set of default parameters for hamiltonian.

get_ham_names()

Return list of Hamiltonians.
get_params_names(ham_name, include_generic=True)

Return list of parameter names for hamiltonian, transformed in all uppercase.

4.3.2 Class Simulation

class py_alf.Simulation(alf_src, ham_name, sim_dict, **kwargs)
Object corresponding to an ALF simulation.

Parameters
alf_src

[ALF_source] Objet representing ALF source code.
ham_name

[str] Name of the Hamiltonian.
sim_dict

[dict or list of dicts] Dictionary specfying parameters owerwriting defaults. Can be a list
of dictionaries to enable parallel tempering.

sim_dir
[path-like object, optional] Directory in which the Monte Carlo will be run. If not speci-
fied, sim_dir is generated from sim_dict.

sim_root
[path-like object, default=”ALF_data”] Directory to prepend to sim_dir.

mpi
[bool, default=False] Employ MPI.

parallel_params
[bool, default=False] Run independent parameter sets in parallel. Based on parallel tem-
pering, but without exchange steps.

n_mpi
[int, default=2] Number of MPI processes if mpi is true.

122 Chapter 4. pyALF Documentation

https://git.physik.uni-wuerzburg.de/ALF/ALF.git

Dissertation Jonas Schwab

n_omp
[int, default=1] Number of OpenMP threads per process.

mpiexec
[str, default=”mpiexec”] Command used for starting a MPI run. This may have to be
adapted to fit with the MPI library used at compilation. Possible candidates include ‘or-
terun’, ‘mpiexec.hydra’.

mpiexec_args
[list of str, optional] Additional arguments toMPI executable. E.g. the flag--hostfile
/path/to/file is specified by mpiexec_args=['--hostfile', '/path/
to/file']

machine
[{“GNU”, “INTEL”, “PGI”, “Other machines defined in configure.sh”}] Compiler and
environment.

stab
[str, optional] Stabilization strategy employed by ALF. Possible values: “STAB1”,
“STAB2”, “STAB3”, “LOG”. Not case sensitive.

devel
[bool, default=False] Compile with additional flags for development and debugging.

hdf5
[bool, default=True] Whether to compile ALF with HDF5. Full postprocessing support
only exists with HDF5.

analysis(python_version=True, **kwargs)
Perform default analysis on Monte Carlo data.
Calls py_alf.analysis(), if run with python_version=True.

Parameters
python_version
[bool, default=True] Use Python version of analysis. The non-Python version is legacy
and does not support all postprocessing features.

**kwargs
[dict, optional] Extra arguments for py_alf.analysis(), if run with
python_version=True.

check_rebin(names, gui='tk', **kwargs)
Plot error vs n_rebin to control autocorrelation.

Parameters
names
[list of str] Names of observables to check.

gui
[{‘tk’, ‘ipy’}] Whether to use Tkinter or Jupyter Widget for GUI. default: ‘tk’

**kwargs
[dict, optional] Extra arguments for py_alf.check_rebin_tk() or py_alf.
check_rebin_ipy().

check_warmup(names, gui='tk', **kwargs)
Plot bins to determine n_skip.

Parameters
names
[list of str] Names of observables to check.

4.3. Reference 123

Dissertation Jonas Schwab

gui
[{‘tk’, ‘ipy’}] Whether to use Tkinter or Jupyter Widget for GUI. default: ‘tk’

**kwargs
[dict, optional] Extra arguments for py_alf.check_warmup_tk() or py_alf.
check_warmup_ipy().

compile(verbosity=0)

Compile ALF.
Parameters

verbosity
[int, default=0] 0: Don’t echo make reciepes. 1: Echo make reciepes. else: Print make
tracing information.

get_directories()

Return list of directories connected to this simulation.
get_obs(python_version=True)

Return Pandas DataFrame containing anaysis results from observables.
The non-python version is legacy and does not support all postprocessing features, e.g. time-displaced
observables.

print_info_file()

Print info file(s) that get generated by ALF.
run(copy_bin=False, only_prep=False, bin_in_sim_dir=False)

Prepare simulation directory and run ALF.
Parameters

copy_bin
[bool, default=False] Copy ALF binary into simulation directory.

only_prep
[bool, default=False] Do not run ALF, only prepare simulation directory.

bin_in_sim_dir
[bool, default=False] Assume that the ALF binary is already present in simultation di-
rectory and use this.

4.3.3 High-level analysis functions

py_alf.analysis.analysis(directory, symmetry=None, custom_obs=None, do_tau=True, always=False)
Perform analysis in the given directory.
Results are written to the pickled dictionary res.pkl and in plain text in the folder res/.

Parameters
directory

[path-like object] Directory containing Monte Carlo bins.
symmetry

[list of functions, optional] List of functions reppresenting symmetry operations on lattice,
including unity. It is used to symmetrize lattice-type observables.

custom_obs
[dict, default=None] Defines additional observables derived from existing observables.
The key of each entry is the observable name and the value is a dictionary with the format:

124 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

{'needs': some_list,
'kwargs': some_dict,
'function': some_function,}

some_list contains observable names to be read by py_alf.ana.ReadObs. Jackknife
bins and kwargs from some_dict are handed to some_function with a separate call for each
bin.

do_tau
[bool, default=True] Analyze time-displaced correlation functions. Setting this to False
speeds up analysis and makes result files much smaller.

always
[bool, default=False] Do not skip if parameters and bins are older than results.

py_alf.check_warmup(*args, gui='tk', **kwargs)
Plot bins to determine n_skip.
Calls either py_alf.check_warmup_tk() or py_alf.check_warmup_ipy().

Parameters
*args
gui

[{“tk”, “ipy”}]
**kwargs

py_alf.check_warmup_tk.check_warmup_tk(directories, names, custom_obs=None)
Plot bins to determine n_skip. Opens a new window.

Parameters
directories

[list of path-like objects] Directories with bins to check.
names

[list of str] Names of observables to check.
custom_obs

[dict, default=None] Defines additional observables derived from existing observables. See
py_alf.analysis().

py_alf.check_warmup_ipy.check_warmup_ipy(directories, names, custom_obs=None, ncols=3)
Plot bins to determine n_skip in a Jupyter Widget.

Parameters
directories

[list of path-like objects] Directories with bins to check.
names

[list of str] Names of observables to check.
custom_obs

[dict, default=None] Defines additional observables derived from existing observables. See
py_alf.analysis().

Returns
Jupyter Widget

A graphical user interface based on ipywidgets
py_alf.check_rebin(*args, gui='tk', **kwargs)

Plot error vs n_rebin in a Jupyter Widget.
Calls either py_alf.check_rebin_tk() or py_alf.check_rebin_ipy().

4.3. Reference 125

Dissertation Jonas Schwab

Parameters
*args
gui

[{“tk”, “ipy”}]
**kwargs

py_alf.check_rebin_tk.check_rebin_tk(directories, names, Nmax0=100, custom_obs=None)
Plot error vs n_rebin. Opens a new window.

Parameters
directories

[list of path-like objects] Directories with bins to check.
names

[list of str] Names of observables to check.
Nmax0

[int, default=100] Biggest n_rebin to consider. The default is 100.
custom_obs

[dict, default=None] Defines additional observables derived from existing observables. See
py_alf.analysis().

py_alf.check_rebin_ipy.check_rebin_ipy(directories, names, custom_obs=None, Nmax0=100,
ncols=3)

Plot error vs n_rebin in a Jupyter Widget.
Parameters

directories
[list of path-like objects] Directories with bins to check.

names
[list of str] Names of observables to check.

Nmax0
[int, default=100] Biggest n_rebin to consider. The default is 100.

custom_obs
[dict, default=None] Defines additional observables derived from existing observables. See
py_alf.analysis().

Returns
Jupyter Widget

A graphical user interface based on ipywidgets

4.3.4 Class Lattice

class py_alf.Lattice(*args, force_python_init=False)
Finite size Bravais lattice object.

Parameters
*args

[dict, tuple, or list] if dict: {‘L1’: L1, ‘L2’: L2, ‘a1’: a1, ‘a2’: a2}.
if tuple or list: [L1, L2, a1, a2].
L1, L2: 2d vector defining periodic boundary conditions.
a1, a2: 2d primitive vectors.

126 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

force_python_init
[bool, default=False] Force the usage of Python version of the initialization. Default be-
haviour is to first try compiled Fortran and fall back to Python if that fails.

fourier_K_to_R(X)
Fourier transform from k to r space.
Last index of input has to run over all lattice points in k space.
Last index of output runs over all lattice points in r space.

fourier_R_to_K(X)

Fourier transform from r to k space.
Last index of input has to run over all lattice points in r space.
Last index of output runs over all lattice points in k space.

k_to_n(k)

Map vector in k space to integer running over all lattice points.
periodic_boundary_k(k)

Apply periodic boundary conditions on vector in k space.
periodic_boundary_r(r)

Apply periodic boundary conditions on vector in r space.
plot_k(data)

Plot data in k space.
Parameters

data
[iterable] Index corresponds to coordinates.

plot_r(data)
Plot data in r space.

Parameters
data
[iterable] Index corresponds to coordinates.

r_to_n(r)

Map vector in r space to integer running over all lattice points.
rotate(n, theta)

Rotate vector in k space.
Parameters

n
[int] Index corresponding to input vector.

theta
[float] Angle of rotation.

Returns
int
Index corresponding to output vector.

4.3. Reference 127

Dissertation Jonas Schwab

4.3.5 Low-level analysis functions

Analysis routines.
class py_alf.ana.Parameters(directory, obs_name=None)

Object representing the “parameters” file.
Parameters

directory
[path-like object] Directory of “parameters” file.

obs_name
[str, optional] Observable name. If this is set, the object tries to get a parameters not from
the namelist ‘var_errors’, but from a namelist called obs_name, while ‘var_errors’ is the
fallback options. Parameters will be written to namelist obs_name.

N_min()

Get minimal number of bins, given the parameters in this object.
N_rebin()

Get N_rebin.
N_skip()

Get N_skip.
set_N_rebin(parameter)

Update N_rebin.
set_N_skip(parameter)

Update N_skip.
write_nml()

Write namelist to file. Preseves comments.
class py_alf.ana.ReadObs(directory, obs_name, bare_bins=False, substract_back=True)

Read, skip, rebin and jackknife scalar-type bins.
Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied. Saves jackknife bins.
Cf. read_scal(), read_latt(), read_hist().

Parameters
directory

[path-like object] Directory containing the observable.
obs_name

[str] Name of observable.
bare_bins

[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.
substract_back

[bool, default=True] Substract background. Applies to correlation functions.
all()

Return all bins.
jack(N_rebin)

Return jackknife bins. Object has to be created with bare_bins=True.
Parameters

N_rebin
[int] Overwrite N_rebin from parameters.

128 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

slice(n)
Return n-th bin.

py_alf.ana.ana_eq(directory, obs_name, sym=None)
Analyze given equal-time correlators.
If sym is given, it symmetrizes the bins prior to calculating the error. Cf. symmetrize().

py_alf.ana.ana_hist(directory, obs_name)
Analyze given histogram observables.

py_alf.ana.ana_scal(directory, obs_name)
Analyze given scalar observables.

Parameters
directory

[path-like object] Directory containing the observable.
obs_name

[str] Name of the observable.
py_alf.ana.ana_tau(directory, obs_name, sym=None)

Analyze given time-displaced correlators.
If sym is given, it symmetrizes the bins prior to calculating the error. Cf. symmetrize().

py_alf.ana.error(jacks, imag=False)
Calculate expectation values and errors of given jackknife bins.

Parameters
jacks

[array-like object] Jackknife bins.
imag

[bool, default=False] Output with imaginary part.
Returns

tuple of numpy arrays
(expectation values, errors).

py_alf.ana.jack(X, par, N_skip=None, N_rebin=None)
Create jackknife bins out of input bins after skipping and rebinning.

Parameters
X

[array-like object] Input bins. Bins run over first index.
par

[Parameters] Parameters object.
N_skip

[int, default=par.N_skip()] Number of bins to skip.
N_rebin

[int, default=par.N_rebin()] Number of bins to recombine into one.
Returns

numpy array
Jackknife bins after skipping and rebinning.

4.3. Reference 129

Dissertation Jonas Schwab

py_alf.ana.load_res(directories)
Read analysis results from multiple simulations.
Read from pickled dictionaries ‘res.pkl’ and return everything in a single pandas DataFrame with one row per
simulation.

Parameters
directories

[list of path-like objects] Directories containing analyzed simulation results.
Returns

df
[pandas.DataFrame] Contains analysis results and Hamiltonian parameters. One row per
simulation.

py_alf.ana.read_hist(directory, obs_name, bare_bins=False)
Read, skip, rebin and jackknife histogram-type bins.
Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied.

Parameters
directory

[path-like object] Directory containing the observable.
obs_name

[str] Name of the observable.
bare_bins

[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.
Returns

array
Observables. shape: (N_bins, N_classes).

array
Sign. shape: (N_bins,).

array
Proportion of observations above upper bound. shape: (N_bins,).

array
Proportion of observations below lower bound. shape: (N_bins,).

N_classes
[int] Number of classes between upper and lower bound.

upper
[float] Upper bound.

lower
[float] Lower bound.

py_alf.ana.read_latt(directory, obs_name, bare_bins=False, substract_back=True)
Read, skip, rebin and jackknife lattice-type bins (_eq and _tau).
Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied.

Parameters
directory

[path-like object] Directory containing the observable.

130 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

obs_name
[str] Name of the observable.

bare_bins
[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.

substract_back
[bool, default=True] Substract background from correlation functions.

Returns
array

Observables. shape: (N_bins, N_orb, N_orb, N_tau, latt.N).
array

Background. shape: (N_bins, N_orb)
array

Sign. shape: (N_bins,).
N_orb

[int] Number of orbitals.
N_tau

[int] Number of imaginary time steps.
dtau

[float] Imaginary time step length.
latt

[Lattice] See py_alf.Lattice.
py_alf.ana.read_scal(directory, obs_name, bare_bins=False)

Read, skip, rebin and jackknife scalar-type bins.
Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied.

Parameters
directory

[path-like object] Directory containing the observable.
obs_name

[str] Name of the observable.
bare_bins

[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.
Returns

array
Observables. shape: (N_bins, N_obs).

array
Sign. shape: (N_bins,).

N_obs
[int] Number of observables.

py_alf.ana.rebin(X, N_rebin)
Combine each N_rebin bins into one bin.
If the number of bins (=N0) is not an integer multiple of N_rebin, the last N0 modulo N_rebin bins are
discarded.

py_alf.ana.symmetrize(latt, syms, dat)
Symmetrize a dataset.

4.3. Reference 131

Dissertation Jonas Schwab

Parameters
latt

[Lattice] See py_alf.Lattice.
syms

[list] List of symmetry operations, including the identity of the form sym(latt, i) ->
i_tranformed

dat
[array-like object] Data to symmetrize. The symmetrization is with respect to the last
index of dat.

Returns
dat_sym

[numpy array] Symmetrized data.

4.3.6 Utility functions

Utility functions for handling ALF HDF5 files.
py_alf.utils.bin_count(filename)

Count number of bins in the given ALF HDF5 file.
Assumes all observables have the same number of bins.

Parameters
filename: str

Name of HDF5 file.
py_alf.utils.del_bins(filename, N0, N)

Delete N bins in all observables of the specified HDF5-file.
Parameters

filename: str
Name of HDF5 file.

N0: int
Number of first N0 bins to keep.

N: int
Number of bins to remove after first N0 bins.

py_alf.utils.find_sim_dirs(root_in='.')
Find directories containing a file named ‘data.h5’.

Parameters
root_in

[path-like object, default=’.’] Root directory from where to start searching.
Returns

list of directory names.
py_alf.utils.show_obs(filename)

Show observables and their number of bins in the given ALF HDF5 file.
Parameters

filename: str
Name of HDF5 file.

132 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

4.3.7 Command line tools

A number of executable python scripts in the folder py_alf/cli. For productive work, it may be suitable to add
this folder to the $PATH environment variable.

4.3.7.1 minimal_ALF_run

Extensively commented example script showing the minimal steps for creating and running an ALF simulation in
pyALF.

4.3.7.2 alf_run

Helper script for compiling and running ALF.

usage: alf_run [-h] [--alfdir ALFDIR] [--sims_file SIMS_FILE] [--branch BRANCH] [--
↪machine MACHINE] [--mpi] [--n_mpi N_MPI] [--mpiexec MPIEXEC] [--mpiexec_args␣
↪MPIEXEC_ARGS] [--do_analysis]

4.3.7.2.1 Named Arguments

--alfdir Path to ALF directory. (default: os.getenv(‘ALF_DIR’, ‘./ALF’)
--sims_file File defining simulations parameters. Each line starts with the Hamiltonian

name and a comma, after wich follows a dict in JSON format for the parameters.
A line that says stop can be used to interrupt. (default: ‘./Sims’)

--branch Git branch to checkout.
--machine Machine configuration (default: ‘GNU’)
--mpi mpi run
--n_mpi number of mpi processes (default: 4)
--mpiexec Command used for starting a MPI run (default: ‘mpiexec’)
--mpiexec_args Additional arguments to MPI executable.
--do_analysis, --ana Run default analysis after each simulation.

4.3.7.3 alf_postprocess

Script for postprocessing Monte Carlo bins.

usage: alf_postprocess [-h] [--check_warmup] [--check_rebin] [-l CHECK_LIST [CHECK_
↪LIST ...]] [--do_analysis] [--always] [--gather] [--no_tau] [--custom_obs CUSTOM_
↪OBS] [--symmetry SYMMETRY] [directories ...]

4.3. Reference 133

Dissertation Jonas Schwab

4.3.7.3.1 Positional Arguments

directories Directories to analyze. If empty, analyzes all directories containing file
“data.h5” it can find, starting from the current working directory.

4.3.7.3.2 Named Arguments

--check_warmup, --warmup Check warmup. Opens new window.
Default: False

--check_rebin, --rebin Check rebinning for controlling autocorrelation. Opens new window.
Default: False

-l, --check_list List of observables to check for warmup and rebinning.
--do_analysis, --ana Do analysis.

Default: False
--always Do not skip analysis if parameters and bins are older than results.

Default: False
--gather Gather all analysis results in one file named “gathered.pkl”, representing a pick-

led pandas DataFrame.
Default: False

--no_tau Skip time displaced correlations.
Default: False

--custom_obs File that defines custom observables. This file has to define
the object custom_obs, needed by py_alf.analysis. (default:
os.getenv(“ALF_CUSTOM_OBS”, None))

--symmetry, --sym File that defines lattice symmetries. This file has to define the object symmetry,
needed by py_alf.analysis. (default: None))

4.3.7.4 alf_bin_count

Count number of bins in ALF HDF5 file(s), assuming all observables have the same number of bins.

usage: alf_bin_count [-h] [filenames ...]

4.3.7.4.1 Positional Arguments

filenames Name of HDF5 files. If no arguments are supplied, all files named “data.h5” in
the current working directory and below are taken.

134 Chapter 4. pyALF Documentation

Dissertation Jonas Schwab

4.3.7.5 alf_show_obs

Show observables and their number of bins in ALF HDF5 file(s).

usage: alf_show_obs [-h] [filenames ...]

4.3.7.5.1 Positional Arguments

filenames Name of HDF5 files. If no arguments are supplied, all files named “data.h5” in
the current working directory and below are taken.

4.3.7.6 alf_del_bins

Delete N bins in all observables of the specified HDF5-file.

usage: alf_del_bins [-h] --N N [--N0 N0] filename

4.3.7.6.1 Positional Arguments

filename Name of HDF5 file.

4.3.7.6.2 Named Arguments

--N Number of bins to remove after first N0 bins.
--N0 Number of first N0 bins to keep. (default=0)

4.3.7.7 alf_test_branch

Script for testing two branches against one another.The test succeeds if analysis results for both branches are exactly
the same.

usage: alf_test_branch [-h] [--sim_pars SIM_PARS] [--alfdir ALFDIR] [--branch_R␣
↪BRANCH_R] [--branch_T BRANCH_T] [--machine MACHINE] [--devel] [--mpi] [--n_mpi N_
↪MPI] [--mpiexec MPIEXEC] [--mpiexec_args MPIEXEC_ARGS] [--no_prep] [--no_sim]

[--no_analyze]

4.3.7.7.1 Named Arguments

--sim_pars JSON file containing parameters for testing. (default: ‘./test_pars.json’)
--alfdir Path to ALF directory. (default: os.getenv(‘ALF_DIR’, ‘./ALF’))
--branch_R Reference branch. (default: master)
--branch_T Branch to test. (default: master)
--machine Machine configuration. (default: “GNU”)
--devel Compile with additional flags for development and debugging.

4.3. Reference 135

Dissertation Jonas Schwab

--mpi Do MPI run(s). (default: False)
--n_mpi Number of MPI processes. (default: 4)
--mpiexec Command used for starting an MPI run. (default: “mpiexec”)
--mpiexec_args Additional arguments to MPI executable.
--no_prep Do not prepare runs, i.e. Compiling and creating directories.
--no_sim Do not run ALF binary.
--no_analyze Do not analyze and compare results.

136 Chapter 4. pyALF Documentation

CHAPTER

FIVE

CONCLUSIONS

In this thesis, I have presented three major projects that collectively contribute to advancing our understanding of
highly correlated quantum systems. Each project was centered around the use of auxiliary field quantum Monte
Carlo, leveraging the capabilities of the Algorithms for Lattice Fermions (ALF) package.
The first project (Chapter 2), conducted in collaboration with renormalization group (RG) experts, investigated ne-
matic quantum phase transitions in Dirac fermions, where the Dirac points are pinned in the disordered phase and
start to meander in the ordered phase. While there have been previous analytical investigations of this kind of tran-
sition, there has been no clear consensus whether it is of first or second order [37, 50, 51, 52, 53]. Set out to solve
this long-standing problem, we conducted the first exact numerical investigation: We designed two sign-problem-
free models exhibiting the intended phase transition. In our QMC studies combined with 𝜖-expansion, we found the
transitions to be continuous, with a quantum critical regime that is characterized by large velocity anisotropies of the
Dirac cones. These velocity anisotropies turned out to have a very slow RG flow (for one of the two models, we could
explicitly show that it diverges logarithmically with the RG parameter). As a result, finitely sized systems, in both
experimental and numerical investigations, will not be representative of the infrared fixed point, but of a quasiuni-
versal regime where the drift of the exponents tracks the velocity anisotropy. Notably, even though the 𝜖-expansion
finds qualitatively distinct fixed points for the two investigated models, the numerical investigation finds no distinc-
tion in the exponents, within the margin of errors. Therefore, it seems that the quasiuniversial regime is —at least
close to the ultraviolet beginning— identical for both models, even though their infrared universality is different. A
particular challenge in this project was the broken Lorentz symmetry caused by both the Fermi velocity anisotropy
and the meandering Dirac points. In particular, the variable zero-dimensional Fermi surface on a finite lattice lead to
confusing artifacts that could be misinterpreted as sings of a first order phase transition. The findings of this project
have already been published in Phys. Rev. Lett. [14].
In my second project (Chapter 3), we set out to perform the first exact numerical investigation to complement the
seminal work of Read and Sachdev [18, 20, 21]. Hence, I simulated a generalized Heisenberg model on a square
lattice, where each site hosts an irreducible representation of SU(𝑁) described by a square Young tableau with 𝑁/2
rows and 2𝑆 columns. With my QMC simulations, we were able to map out its ground state phase diagram for
𝑆 ∈ {1/2, 1, 3/2, 4} and 𝑁 ∈ {2, 4, … , 22}. Confirming the analytical work by Read and Sachdev, we found
antiferromagnetic order for big 𝑆 and dimerized order for big 𝑁 . Along a line defined by 𝑁 = 8𝑆 + 2 in the 𝑆
versus 𝑁 phase diagram, we observe a rich variety of phases. For 𝑆 = 1/2 and 3/2, the system forms a four-fold
degenerate VBS state, while for 𝑆 = 1, we identify a two-fold degenerate spin nematic state that breaks the 𝐶4
lattice symmetry down to 𝐶2. At 𝑆 = 2, we observe a unique symmetry-protected topological state, characterized
by a dimerized SU(18) boundary state, reminiscent of the two-dimensional Affleck-Kennedy-Lieb-Tasaki (AKLT)
state. These phases proximate to the Néel state align with the theoretical framework of monopole condensation of
the antiferromagnetic order parameter, with degeneracies following a mod(4, 2𝑆) rule. The findings of this project
have already been published in [17].
The third project is in a sense a meta-project, since it is –at least in parts– the result of my adaptions and extensions of
ALF for working more efficiently on the first two projects. In Chapter 4 this is represented by the documentation of
pyALF, a Python library for running and analyzing ALF simulations, but I also supplied significant contributions to
the ALF Fortran code [13]. My most noteworthy contributions to ALF include an improved encapsulation of model
definitions, implementing HDF5 for observables and an extension of the automatic test executed by our development
platform, GitLab.
All in all, I believe my research offers new insights into highly correlated quantum systems and both my contributions
to ALF and the development of pyALF provide significant advances in tooling for the numerical study of condensed
matter models.

137

Dissertation Jonas Schwab

5.1 Outlook for (py)ALF

Going forward, there are still many possibilities to further improve ALF and pyALF. What might come to mind first,
are new features for models and enhancements on the QMC algorithm, such as the new type of interaction vertex for
implementing general gauge theories the ALF collaboration is currently working on1. Furthermore, ALF will have to
start leveraging GPUs, if we want to keep on track with advances in HPC computing. But there is also a big potential
for improving the structure of the code and its usability.
In particular, further development of pyALF has a big potential for improving usability. Lowering the barrier of entry
can open ALF to a whole new host of users. I would like to group such improvements into two categories:

1. Reducing the needed IT knowledge, i.e. keeping the users away from Fortran code, compilers, terminal shells,
etc.

2. Reduce the needed QMC knowledge, by automating common accuracy checks and detection of failing simu-
lations.

Here are three partly interconnected measures from the first category:
• Exposing ALF directly to Python through a module, instead of executing the ALF binary through a system call
–as pyALF does it currently–, would generate a smoother user experience and eliminate many potential points
of failure.

• Furthermore, a possibility to define Hamiltonians directly in Python instead of Fortran would also lower the
barrier of entry significantly. Here, the biggest challenge would be to find a way for implementing new observ-
ables.

• Lastly, shipping binaries with the Python package would also improve the user experience, since they would
not have to deal with compilers and the ALF source code any more, on the other hand, this may come at the
expense of performance losses.

To let users treat (py)ALF as a black box that returns accurate results with error bars, we will have to automate
a number of common checks. Properties to test are the Green function precision (i.e. numerical stability of the
algorithm), warmup times, autocorrelation times, spikes from fat-tailed distributions and systematic errors from the
imaginary time step Δ𝜏 . Although the last one might also be kept with the user. Furthermore, estimating simulation
times and issuing warnings if jobs might take longer than expected will also be a great help for novice users.
Checking the Green function precision will be relatively easy. One could issue a warning (pronounced enough to
prompt most users to investigate) if the average or maximal deviation are above a certain threshold, e.g. 10−5 and
0.1, respectively. Alternatively, one could take the management of stabilization completely out of the hand of (novice)
users, by auto-tuning stabilization intervals and even switching between stabilization schemes if e.g. the scales become
too big.
The correct estimation of warmup and autocorrelation times poses a bigger challenge. The general strategy for
warmup estimations would most certainly involve a linear fit of the observable time series 𝑂(𝑡) and dismissal of the
leading elements until the slope is zero within some bounds. Though finding good criteria might be tricky, since for
fluctuating data, a fit could be flat within error bars but still show a significant drift. For autocorrelation time, one
could fit ̄𝛾𝜏(𝑂) = exp(− 𝜏

𝜏𝛾(𝑂)) (cf. Eq. (1.7)), but results from this still have to be treated carefully. Overall, one
can never be entirely sure the Markov Chain is not stuck in a local maximum of the weight, or if there is a very slow
mode that can not be resolved yet.
To detect whether the simulation might sample a fat-tailed distribution, the observable time series has to be scanned
for outliers –so-called spikes–, e.g. by comparing the deviation of individual bins from the mean to the average
fluctuation, or by arranging the bins into a histogram.
Implementing these checks to at least work in many cases should be feasible, but extensive tests will be in order.
Generally, my approach here would be to err on the side of caution and prompt the user to look directly at the data
if the data quality looks ambiguous to the algorithm.
With these ideas for making (py)ALF more approachable, I am concluding my thesis.

1 https://git.physik.uni-wuerzburg.de/ALF/ALF/-/issues/297

138 Chapter 5. Conclusions

https://git.physik.uni-wuerzburg.de/ALF/ALF/-/issues/297

Appendix

139

APPENDIX

A

APPENDIX TO “NEMATIC QUANTUM CRITICALITY IN DIRAC
SYSTEMS”

The appendix for Chapter 2.
• Renormalization group flow

• pyALF Example

• Source code of data collapse functions

• Source code for exponential fit of Green function

• Other values for 𝑁𝜎 and 𝜉

A.1 Renormalization group flow

In this appendix, we present details of the renormalization group (RG) analysis of the continuum field theories. Due
to the lack of Lorentz and continuous spatial rotational symmetries in the low-energy models, the Fermi and bosonic
velocities, as well as their anisotropies, will in general receive different loop corrections. In order to appropriately
take this multiple dynamics [60, 61] into account, it is useful to employ a regularization in the frequency only, which
preserves the property that the different momentum components can be rescaled independently. This allows us to
keep the boson velocities 𝑐 ≡ 𝑐+ = 𝑐− fixed, i.e., we measure the Fermi velocities in units of 𝑐 = 1. Integrating
over the “frequency shell” Λ/𝑏 ≤ |𝜔| ≤ Λ with 𝑏 > 1 and all momenta causes the velocities and couplings to flow at
criticality 𝑟 = 0 as

d𝑣∥
d ln 𝑏 = 1

2(𝜂𝜙 − 𝜂+ − 2𝜂𝜓)𝑣∥ − 𝐹(𝑣∥, 𝑣⟂)𝑔2,
d𝑣⟂
d ln 𝑏 = 1

2(𝜂𝜙 − 𝜂− − 2𝜂𝜓)𝑣⟂ + 𝐹(𝑣⟂, 𝑣∥)𝑔2,
d𝑔2

d ln 𝑏 = (𝜖 − 𝜂+ + 𝜂−
2 − 2𝜂𝜓) 𝑔2 − 2𝐺(𝑣∥, 𝑣⟂)𝑔4,

d𝜆
d ln 𝑏 = (𝜖 − 𝜂+ + 𝜂−

2 − 𝜂𝜙) 𝜆 − 18𝜆2 + 𝑁 ′𝑔4

16𝑣∥𝑣⟂
,

(1.1)

with the anomalous dimensions 𝜂𝜓 = 𝑔2𝐻(𝑣∥, 𝑣⟂), 𝜂𝜙 = 𝑁 ′𝑔2/(12𝑣∥𝑣⟂), and 𝜂± = 𝑎±𝑁 ′𝑔2𝑣⟂/(12𝑣∥), to the
one-loop order. Here, the angular integrals are performed in 𝑑 = 2, while the dimensions of the couplings are counted
in general 𝑑 [51, 117]. At the present order, the flows of the two models differ only in the definition of the coefficients
𝑎±, with 𝑎+ = 0, 𝑎− = 2 (𝑎+ = 𝑎− = 1) in the 𝐶2𝑣 (𝐶4𝑣) model, and the number of spinor components 𝑁 ′ = 4𝑁𝜎
(𝑁 ′ = 8𝑁𝜎). Our regularization scheme allows the evaluation of the one-loop integrals in closed form, leading to

141

Dissertation Jonas Schwab

the functions

𝐹(𝑣1, 𝑣2) = 1
𝜋 ∫

∞

−∞
∫

∞

−∞

𝑣1𝑞2
1d𝑞1d𝑞2

(1 + 𝑞2
1 + 𝑞2

2)2 (1 + 𝑣2
1𝑞2

1 + 𝑣2
2𝑞2

2)

=
𝑣1 [𝑣1 (𝑣2

2 − 1) √ 1−𝑣2
1

𝑣2
2−1 + (𝑣1 + 𝑣2) sin−1 (𝑣1√ 𝑣2

2−1
𝑣2

2−𝑣2
1
) − (𝑣1 + 𝑣2) csc−1 (√ 𝑣2

2−𝑣2
1

𝑣2
2−1)]

(𝑣2
1 − 1) (𝑣2

2 − 1) (𝑣1 + 𝑣2)√ 1−𝑣2
1

𝑣2
2−1

, (1.2)

𝐺(𝑣1, 𝑣2) = 1
2𝜋 ∫

∞

−∞
∫

∞

−∞

1 − 𝑣2
1𝑞2

1 + 𝑣2
2𝑞2

2
(1 + 𝑞2

1 + 𝑞2
2) (1 + 𝑣2

1𝑞2
1 + 𝑣2

2𝑞2
2)2 d𝑞1d𝑞2

=
(𝑣2

2 − 1) (𝑣1𝑣2 − 1)√ 1−𝑣2
1

𝑣2
2−1 + (𝑣2

1 + 𝑣2
2 − 2) csc−1 (1

𝑣1
√ 𝑣2

2−𝑣2
1

𝑣2
2−1) − (𝑣2

1 + 𝑣2
2 − 2) csc−1 (√ 𝑣2

2−𝑣2
1

𝑣2
2−1)

2 (𝑣2
1 − 1) (𝑣2

2 − 1)2 √ 1−𝑣2
1

𝑣2
2−1

+
𝑣1 [(𝑣2

2 − 1) √ 1−𝑣2
1

𝑣2
2−1 − 𝑣1(𝑣1 + 𝑣2) sin−1 (√ 𝑣2

2−1
𝑣2

2−𝑣2
1
) + 𝑣1(𝑣1 + 𝑣2) csc−1 (1

𝑣1
√ 𝑣2

2−𝑣2
1

𝑣2
2−1)]

2 (𝑣2
1 − 1) (𝑣2

2 − 1) (𝑣1 + 𝑣2)√ 1−𝑣2
1

𝑣2
2−1

+
𝑣4

2(𝑣1 + 𝑣2) sin−1 (√ 𝑣2
2−1

𝑣2
2−𝑣2

1
)

2𝑣2
2 (𝑣2

2 − 1)2 (𝑣1 + 𝑣2)√ 1−𝑣2
1

𝑣2
2−1

+
(𝑣3

1 + 𝑣2
1𝑣2 + 𝑣1𝑣2

2 + 𝑣3
2) sin−1 (𝑣1√ 𝑣2

2−1
𝑣2

2−𝑣2
1
) − 2 (𝑣2

1 − 1) 𝑣3
2√ 1−𝑣2

1
𝑣2

2−1

4 (𝑣2
1 − 1) 𝑣2

2 (𝑣2
2 − 1) (𝑣1 + 𝑣2)√ 1−𝑣2

1
𝑣2

2−1

−
(𝑣2

2 + 1) [𝑣3
1 (2𝑣2

2 − 1) + 𝑣2
1𝑣2 (2𝑣2

2 − 1) − 𝑣1𝑣2
2 − 𝑣3

2] csc−1 (1
𝑣1

√ 𝑣2
2−𝑣2

1
𝑣2

2−1)

4 (𝑣2
1 − 1) 𝑣2

2 (𝑣2
2 − 1)2 (𝑣1 + 𝑣2)√ 1−𝑣2

1
𝑣2

2−1

,

𝐻(𝑣1, 𝑣2) = 1
𝜋 ∫

∞

−∞
∫

∞

−∞

d𝑞1d𝑞2

(1 + 𝑞2
1 + 𝑞2

2)2 (1 + 𝑣2
1𝑞2

1 + 𝑣2
2𝑞2

2)

=
(𝑣2

1 + 𝑣2
2 − 2𝑣2

1𝑣2
2) [csc−1 (√ 𝑣2

2−𝑣2
1

𝑣2
2−1) − csc−1 (1

𝑣1
√ 𝑣2

2−𝑣2
1

𝑣2
2−1)]

(𝑣2
1 − 1) (𝑣2

2 − 1)2 √ 1−𝑣2
1

𝑣2
2−1

−
(𝑣1𝑣2 − 1)√ 1−𝑣2

1
𝑣2

2−1

(𝑣2
1 − 1) (𝑣2

2 − 1) √ 1−𝑣2
1

𝑣2
2−1

.

(1.3)

The above one-loop flow equations admit a nontrivial fixed point that is characterized by anisotropic Fermi velocities
𝑣∗

∥ = 0 and 𝑣∗
⟂ = 1/√𝑎− > 0, and vanishing 𝑔2

∗ and 𝜆∗, but finite ratio (𝑔2/𝑣∥)∗ = 12√𝑎−𝜖/𝑁 ′ + 𝒪(𝜖2).
Perturbations of the couplings 𝑔2 and 𝜆 and the Fermi velocity 𝑣⟂ away from this fixed point turn out to be irrelevant;
however, the flow of 𝑣∥ near the fixed point is

d𝑣∥
d ln 𝑏 ∣

𝑔2∗ ,𝑣∗
⟂

= 𝜖
2(1 − 𝑎+)𝑣∥ − 20𝜖

𝑁 ′ 𝑣2
∥ + 𝒪(𝑣3

∥). (1.4)

Hence, in the 𝐶4𝑣 model with 𝑎+ = 𝑎− = 1, 𝑣∥ is marginally irrelevant, rendering the fixed point stable. The fixed
point represents a quantum critical point with maximally anisotropic Fermi velocities (𝑣∗

∥, 𝑣∗
⟂) = (0, 1) and boson

anomalous dimensions, describing the temporal and spatial decays of the order-parameter correlations, as 𝜂𝜙 = 𝜖
and 𝜂+ = 𝜂− = 𝜖, respectively. The fermion anomalous dimension becomes 𝜂𝜓 = 0. In the vicinity of this fixed
point, the flow of 𝑣∥ can be integrated out analytically, reading

𝑣∥(𝑏) ≃ 𝑁 ′

20𝜖 ln 𝑏 , (1.5)

where we have assumed 𝑏 ≫ 1 for simplicity. This demonstrates that the Fermi velocity flow in the vicinity of the𝐶4𝑣
fixed point is logarithmically slow, reflecting the fact that 𝑣∥ is marginally irrelevant at this fixed point. This indicates
that exponentially large lattice sizes are needed to ultimate reach the fixed point. By contrast, in the 𝐶2𝑣 model with
𝑎+ = 0 and 𝑎− = 2, 𝑣∥ is a relevant parameter near the maximal-anisotropy fixed point and flows to larger values. By
numerically integrating out the flow, we find that the parameters 𝑣⟂, 𝑣∥, and 𝑔2 flow to a new nontrivial stable fixed
point at which the boson anomalous dimensions satisfy a sum rule, 𝜂+ + 𝜂− + 2𝜂𝜙 = 2𝜖 with 0 = 𝜂+ < 𝜂−, 𝜂𝜙 < 𝜖.
The fixed point is located at (𝑣∗

∥, 𝑣∗
⟂) = (0.1611, 0.5942) and (𝑔2

∗ , 𝜆∗) = (0.2123, 0.1755)𝜖 + 𝒪(𝜖2) for 𝑁 ′ =
4𝑁𝜎 = 4. We find the corresponding anomalous dimensions as (𝜂𝜙, 𝜂+, 𝜂−, 𝜂𝜓) = (0.7391, 0, 0.5219, 0.1643)𝜖 +
𝒪(𝜖2), reflecting again the fact that the character of the stable fixed point in the𝐶2𝑣 model is different from the one of

142 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

the𝐶4𝑣 model. The different behaviors of the Fermi velocities in the twomodels is illustrated in Fig. A1, which shows
the renormalization group flow in the 𝑣∥-𝑣⟂ plane. For visualization purposes, we have fixed the ratios 𝑔2/(𝑣⟂𝑣∥) to
their values at the respective stable fixed points in these plots. We have explicitly verified that 𝑔2/(𝑣⟂𝑣∥) corresponds
to an irrelevant parameter near these fixed points (marked as red dots in Fig. A1).

Fig. A1: Renormalization group flow in the 𝑣∥-𝑣⟂ plane for (a) the 𝐶2𝑣 model and (b) the 𝐶4𝑣 model. Arrows denote
flow towards infrared. The fixed point at (𝑣∗

∥, 𝑣∗
⟂) = (0, 1/√𝑎−) and (𝑔2/𝑣∥)∗ = 12√𝑎−𝜖/𝑁 ′ is unstable in the

𝐶2𝑣 model [black dot in (a)], but stable in the 𝐶4𝑣 model [red dot in (b)]. In the 𝐶2𝑣 model, there is a nontrivial
stable fixed point at (𝑣∗

∥, 𝑣∗
⟂) = (0.1611, 0.5942), with 𝑔2

∗ = 0.2123𝜖 for 𝑁 ′ = 4 [red dot in (a)]. For visualization
purposes, we have fixed the ratio 𝑔2/(𝑣⟂𝑣∥) to its value at the respective stable fixed point (red dots) in these plots.

To make further contact with the QMC data displayed in Fig. 2.14(e), we show in Fig. A2(a,b) the Fermi velocity
ratio 𝑣⟂/𝑣∥ as function of RG scale 1/𝑏 in the two models, assuming an isotropic ratio 𝑣⟂/𝑣∥ = 1 at the ultraviolet
scale 𝑏 = 1, for different initial values of the interaction parameter 𝑔2/(𝑣∥𝑣⟂). We emphasize that a sizable deviation
between the two models is observable only at very low energies 1/𝑏 ≲ 0.01, while the RG flows in the high-energy
regime are very similar for the employed starting values. Identifying the RG energy scale 1/𝑏 roughly with the
inverse lattice size 1/𝐿, this result explains why the lattice sizes available in our simulations are too small to detect a
substantial difference in the finite-size scaling of 𝑣⟂/𝑣∥. This also implies that the estimates for the critical exponent
obtained from the finite-size analysis of the QMC data describes only an intermediate regime, in which the RG flow
is not yet fully integrated out. Let us illustrate this point further for the case of the 𝐶4𝑣 model. In this case, we can
define a scale-dependent effective correlation-length exponent by using the scaling relation

1/𝜈eff(𝑏) = 2 − 𝜂eff𝜙 (𝑏), (1.6)

where 𝜂eff𝜙 (𝑏) = 𝑁 ′𝑔2(𝑏)/[12𝑣⟂(𝑏)𝑣⟂(𝑏)] is the effective boson anomalous dimension. This relation becomes exact
in the vicinity of the 𝐶4𝑣 fixed point, for which 𝜆∗ = 0. The effective correlation-length exponent 1/𝜈eff is plotted
as function of the RG scale 1/𝑏 in Fig. A2(c) for different values of the initial interaction parameter 𝑔2/(𝑣∥𝑣⟂). We
note that the approach to 𝜈eff → 1 in the deep infrared is extremely slow, with sizable deviations from the fixed-point
value at intermediate scales. Interestingly, while the behavior in the high-energy regime 1/𝑏 ≳ 0.05 is nonuniversal
and strongly depends on the particular starting values of the RG flow, a quasiuniversal regime emerges at intermediate
energy 1/𝑏 ≲ 0.05, in which the exponents still drift, but have only a very weak dependence on the initial interaction
parameters. This quasiuniversal behavior is a characteristic feature of systems with marginal or close-to-marginal
operators [65, 66]. Here, it arises from the slow flow of the velocity anisotropy ratio 𝑣⟂/𝑣∥, which implies that the
effective exponents will become functions of 𝑣⟂/𝑣∥ only, but not of the ultraviolet starting values of the interaction
parameters. The quasiuniversality reflects the fact that there is only one slowly decaying perturbation to the fixed
point (i.e., the leading irrelevant operator), whereas all other perturbations decay quickly, and hence have died out
once 1/𝑏 ≲ 0.05. Importantly, the largest lattice sizes available in the QMC simulations appear to be just large
enough to approach the quasiuniversal regime, if we again identify 1/𝑏 roughly with 1/𝐿. Reassuringly, for 𝐿 = 20,
we therewith obtain the RG estimate 1/𝜈eff ≃ 1.20 … 1.25, which is in the same ballpark as the estimate from the
finite-size scaling analysis of the QMC data discussed in the main text.

A.1. Renormalization group flow 143

Dissertation Jonas Schwab

Fig. A2: (a,b) Ratio of Fermi velocities 𝑣⟂/𝑣∥ as function of RG scale 1/𝑏 in the 𝐶2𝑣 model (blue) and 𝐶4𝑣 model
(green) for different starting values of the interaction parameter 𝑔2/(𝑣∥𝑣⟂) at the ultraviolet scale 𝑏 = 1. Here, we
have numerically integrated out the full RG flow in the (𝑣∥, 𝑣⟂, 𝑔2) parameter space, assuming initial velocities
𝑣∥(𝑏 = 1) = 𝑣⟂(𝑏 = 1) = 0.25, and 𝑔2/(𝑣∥𝑣⟂)(𝑏 = 1) between 50% and 100% of the value at the respective stable fixed point.
(a) Semilogarithmic plot, demonstrating the finite infrared anisotropy in the 𝐶2𝑣 model and the logarithmic divergence in the

𝐶4𝑣 model. (b) Same data as in (a), but using a linear plot, illustrating the similarity of the anisotropy flows in the two models on
the high-energy scale, to be compared with the QMC data shown in Fig. 2.14. (c) Effective correlation-length exponent 1/𝜈eff as
function of RG scale 1/𝑏 in the 𝐶4𝑣 model in semilogarithmic plot, defined according to Eq. (1.6), illustrating the drifting of the

exponents and the quasiuniversal behavior for 1/𝑏 ≲ 0.05. We have used the same ultraviolet starting values as in (a,b).

A.2 pyALF Example

This section shows, in a concise form, how to use pyALF to get some of the results shown in Chapter 2, by demon-
strations on a small amount of data. It is split in two parts: The first part consists of running ALF simulations, it
is designed to run a total of approximately 26 hours on a quad-core machine. The second part showcases some
postprocessing of the produced data, e.g. through data collapse.

A.2.1 Running ALF

from pprint import pprint # Pretty print
from py_alf import ALF_source, Simulation # Interface with ALF

A.2.1.1 ALF_source

Create instance of ALF_source, choosing to checkout the git branch
'211-add-nematic-dirac-hamiltonian', since the Nematic Dirac Hamiltonian is not on master.
Reminder: Directory containing the ALF code is taken from environment variable $ALF_DIR, if present.

alf_src = ALF_source(
branch='211-add-nematic-dirac-hamiltonian',

)

Checking out branch 211-add-nematic-dirac-hamiltonian
Your branch is up to date with 'origin/211-add-nematic-dirac-hamiltonian'.

Check available Hamiltonians:

alf_src.get_ham_names()

['Kondo',
'Hubbard',
'Hubbard_Plain_Vanilla',

(continues on next page)

144 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

(continued from previous page)
'tV',
'LRC',
'Z2_Matter',
'Nematic_Dirac']

Print valid parameters and their defaults for Nematic Dirac Hamiltonian:

pprint(alf_src.get_default_params('Nematic_Dirac', include_generic=False))

OrderedDict([('VAR_Nematic_Dirac',
{'Global_J': {'comment': 'J for proposing global updates',

'defined_in_base': False,
'value': 1.0},

'Global_h': {'comment': 'h for proposing global updates',
'defined_in_base': False,
'value': 3.0},

'Global_type': {'comment': 'Type of global update. Possible '
"values: 'Wolff', 'Geo', 'switch', "
"'flip'",

'defined_in_base': False,
'value': ''},

'Ham_J': {'comment': 'Ferromagnetic Ising interaction',
'defined_in_base': False,
'value': 1.0},

'Ham_chem': {'comment': 'Chemical potential',
'defined_in_base': False,
'value': 0.0},

'Ham_h': {'comment': 'Ising transverse field',
'defined_in_base': False,
'value': 3.0},

'Ham_xi': {'comment': 'Coupling strength Ising spins <-> '
'fermions',

'defined_in_base': False,
'value': 1.0},

'Ham_xi2': {'comment': 'Static fermion hopping "distortion"',
'defined_in_base': False,
'value': 0.0},

'L1': {'comment': 'Size of lattice in a1 direction',
'defined_in_base': False,
'value': 4},

'L2': {'comment': 'Size of lattice in a2 direction',
'defined_in_base': False,
'value': 4},

'Model_vers': {'comment': 'Version of model. 1: C_2v model, 2: '
'C_4v model',

'defined_in_base': False,
'value': 1},

'N_SUN': {'comment': 'SU(N) symmetry',
'defined_in_base': True,
'value': 2},

'Phi_1': {'comment': 'Twisted boundary in a1 direction',
'defined_in_base': False,
'value': 0.0},

'Phi_2': {'comment': 'Twisted boundary in a2 direction',
'defined_in_base': False,
'value': 0.0},

'beta': {'comment': 'Reciprocal temperature',
'defined_in_base': False,
'value': 10.0},

'dtau': {'comment': 'Imaginary time step size',
'defined_in_base': False,

(continues on next page)

A.2. pyALF Example 145

Dissertation Jonas Schwab

(continued from previous page)
'value': 0.1},

'ham_t': {'comment': 'Hopping amplitude of fermions',
'defined_in_base': False,
'value': 1.0},

'init_type': {'comment': 'How to initialize Ising field. '
"Possible values: 'random', 'up', "
"'down', 'updown'",

'defined_in_base': False,
'value': 'random'}})])

A.2.1.2 Perform simulations

The loop shown below performs a parameter sweep over transverse field strength ℎ ∈ {2.5, 3.0, 3.5, 4.0} for system
sizes 𝐿 ∈ {4, 6, 8, 10}. Parallel Tempering is used to run simulations with different ℎ in parallel. This method is
actually intended for addressing ergodicity issues, but in this case it is only used to more conveniently perform a
parameter sweep in parallel.
The simulations are set to take 0.2, 1, 7 and 18 hours.
for L, time in zip([4, 6, 8, 10], [.2, 1., 7., 18.]):

print(f'====== L={L} ======')
sim = Simulation(

alf_src,
'Nematic_Dirac',
[{

Model specific parameters
'Model_vers': 1, # C_2v model
'L1': L,
'L2': L,
'beta': L*4.,
'Ham_xi': 0.25,
'Ham_h': h,
QMC parameters
'Ltau': 1,
'CPU_MAX': time,
'NSweep': 20,
'mpi_per_parameter_set': 1,
Only put Tempering_calc_det=False if you know what you're doing.
'Tempering_calc_det': False,

} for h in [2.5, 3.0, 3.5, 4.0]],
machine='intel',
mpi=True,
n_mpi=4,

)
if L == 4:

We only need to compile once
sim.compile()

sim.run()
sim.print_info_file()

The text printed through these simulations is very long and has therefore been hidden, but it can be viewed in the
website version1 of this document.
The info files produced by ALF show a “Precision Green” and “Precision Phase” of order 10−14 which is very good
and much smaller than 10−8. In fact one might consider increasing the stabilization interval Nwrap to speed up the
simulation.
The produced QMC data will be postprocessed in the next section.

1 https://purl.org/diss-jschwab

146 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

https://purl.org/diss-jschwab

Dissertation Jonas Schwab

A.2.1.3 Prepare directories for simulation

pyALF can also be use to prepare simulation directories without executing ALF, for example to copy the prepared
directories to another machine or execute ALF in another way like a scheduler.
The following example prepares the directory for_hpc with subdirectories L{L}/h{h}.

for L in [4, 6, 8, 10]:
for h in [2.5, 3.0, 3.5, 4.0]:

sim = Simulation(
alf_src,
'Nematic_Dirac',
{

Model specific parameters
'Model_vers': 1, # C_2v model
'L1': L,
'L2': L,
'beta': L*4.,
'Ham_xi': 0.25,
'Ham_h': h,
QMC parameters
'Ltau': 1,
'CPU_MAX': 24,
'NSweep': 20,
'mpi_per_parameter_set': 1,
Only put Tempering_calc_det=False if you know what you're doing.
'Tempering_calc_det': False,

},
machine='intel',
mpi=True,
n_mpi=4,
sim_root='for_hpc',
sim_dir=f'L{L}/h{h}'

)
sim.run(only_prep=True)

Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/
↪L4/h2.5" for Monte Carlo run.

Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/
↪L4/h3.0" for Monte Carlo run.

Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L4/h3.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L4/h4.0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L6/h2.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L6/h3.0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L6/h3.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L6/h4.0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L8/h2.5" for Monte Carlo run.
Create new directory.

(continues on next page)

A.2. pyALF Example 147

Dissertation Jonas Schwab

(continued from previous page)
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L8/h3.0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L8/h3.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L8/h4.0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L10/h2.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L10/h3.0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L10/h3.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/dissertation/jb/appendix_nematic_pyalf/for_hpc/

↪L10/h4.0" for Monte Carlo run.
Create new directory.

!tree for_hpc

for_hpc
├── L10
│ ├── h2.5
│ │ ├── parameters
│ │ └── seeds
│ ├── h3.0
│ │ ├── parameters
│ │ └── seeds
│ ├── h3.5
│ │ ├── parameters
│ │ └── seeds
│ └── h4.0
│ ├── parameters
│ └── seeds
├── L4
│ ├── h2.5
│ │ ├── parameters
│ │ └── seeds
│ ├── h3.0
│ │ ├── parameters
│ │ └── seeds
│ ├── h3.5
│ │ ├── parameters
│ │ └── seeds
│ └── h4.0
│ ├── parameters
│ └── seeds
├── L6
│ ├── h2.5
│ │ ├── parameters
│ │ └── seeds
│ ├── h3.0
│ │ ├── parameters
│ │ └── seeds
│ ├── h3.5
│ │ ├── parameters

(continues on next page)

148 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

(continued from previous page)
│ │ └── seeds
│ └── h4.0
│ ├── parameters
│ └── seeds
└── L8

├── h2.5
│ ├── parameters
│ └── seeds
├── h3.0
│ ├── parameters
│ └── seeds
├── h3.5
│ ├── parameters
│ └── seeds
└── h4.0

├── parameters
└── seeds

20 directories, 32 files

A.2.2 Postprocessing

Enable Jupyter Widget support for matplotlib.
%matplotlib widget

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

A.2.2.1 Find QMC data

The variable dirs is a list of all directories containing an ALF results file data.h5.

from py_alf.utils import find_sim_dirs
dirs = find_sim_dirs()
dirs

['./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_
↪h=2.5/Temp_0',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_
↪h=2.5/Temp_1',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_
↪h=2.5/Temp_2',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_
↪h=2.5/Temp_3',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.
↪5/Temp_0',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.
↪5/Temp_1',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.
↪5/Temp_2',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.
↪5/Temp_3',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.
↪5/Temp_0',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.
↪5/Temp_1',

(continues on next page)

A.2. pyALF Example 149

Dissertation Jonas Schwab

(continued from previous page)
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.
↪5/Temp_2',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.
↪5/Temp_3',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.
↪5/Temp_0',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.
↪5/Temp_1',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.
↪5/Temp_2',
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.
↪5/Temp_3']

A.2.2.2 Custom observables

Defining some observables derived from measurements done during the simulations (cf. Section 4.2.3.2).

Correlation ratio 1 − 𝑂(𝒌+𝜹)
𝑂(𝒌) . RG-invariant quantity

def R_k(obs, back, sign, N_orb, N_tau, dtau, latt,
ks=[(0., 0.)], mat=None, NNs=[(1, 0), (0, 1), (-1, 0), (0, -1)]):

"""RG-invariant quantity derived from a correlation function.

obs.shape = (N_orb, N_orb, N_tau, latt.N)
back.shape = (N_orb,)
"""
if mat is None:

mat = np.identity(N_orb, dtype=np.double)
out = 0.
for k in ks:

n = latt.k_to_n(k)

J1 = (obs[..., n].sum(axis=-1) * mat).sum()
J2 = 0
for NN in NNs:

i = latt.nnlistk[n, NN[0], NN[1]]
J2 += (obs[..., i].sum(axis=-1) * mat).sum() / len(NNs)

out += (1 - J2/J1)

return out / len(ks)

Binder cumulant (3 − ⟨𝑠4⟩
⟨𝑠2⟩2) /2. RG-invariant quantity

def binder(obs, sign, N_obs):
return (3 - obs[2] / obs[1]**2 * sign)/2

Susceptibility ∫𝛽
0 d𝜏 𝐶 (𝒌, 𝜏)

def susceptibility(obs, back, sign, N_orb, N_tau, dtau, latt,
ks=[[0., 0.]]):

"""Susceptibility of a time-displaced correlation function.

obs.shape = (N_orb, N_orb, N_tau, latt.N)
back.shape = (N_orb,)
"""
out = 0.
for k in ks:

n = latt.k_to_n(k)
out += dtau*obs[..., n].trace().sum() / sign

return out / len(ks)

150 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

Fermionic single particle gap determined through a quick and dirty fit of the time-displaced Green function (cf.
Section 2.7.2.1).

from scipy.optimize import curve_fit

def fit_gap_lazy(obs, back, sign, N_orb, N_tau, dtau, latt):
"""Lazily fit Green function to determin gap.

obs.shape = (N_orb, N_orb, N_tau, latt.N)
"""
i1 = (2*N_tau)//24
i2 = (4*N_tau)//24
green = obs[0, 0, i1:i2, :]/sign

def func(x, a, b):
return a*np.exp(-b*x)

taus = np.arange(0., N_tau*dtau, dtau)
res = np.empty((latt.N,), dtype=np.cdouble)
for n in range(latt.N):

popt, pcov = curve_fit(func, taus[i1:i2], green[:, n])
res[n] = popt[1]

return res

custom_obs = {}

Structure factor correlation ratio
custom_obs['R_S']= {

'needs': ['IsingZ_eq'],
'function': R_k,
'kwargs': {}

}

Susceptibility correlation ratio
custom_obs['R_chi']= {

'needs': ['IsingZT_tau'],
'function': R_k,
'kwargs': {}

}

Binder cumulant
custom_obs['B']= {

'needs': ['m_scal'],
'function': binder,
'kwargs': {}

}

Susceptibility
custom_obs['chi']= {

'needs': ['IsingZT_tau'],
'function': susceptibility,
'kwargs': {}

}

Susceptibility
custom_obs['gap_lazy']= {

'needs': ['Green_tau'],
'function': fit_gap_lazy,
'kwargs': {}

}

A.2. pyALF Example 151

Dissertation Jonas Schwab

A.2.2.3 Check warmup and autocorrelation times

C.f. Section 4.2.3.3.

from py_alf import check_warmup, check_rebin

check_warmup(dirs, ['m_scal', 'ising_x_scal', 'chi', 'R_S', 'B', 'R_chi'],
custom_obs=custom_obs, gui='ipy')

check_rebin(dirs, ['m_scal', 'ising_x_scal', 'chi', 'R_S', 'B', 'R_chi'],
custom_obs=custom_obs, gui='ipy')

152 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

A.2.2.4 Error analysis

The analysis results are saved in each simulation directory, both in plain text in the folder res and as a pickled2
Python dictionary in the file res.pkl.
Due to its length, the text printed out during the analysis is hidden, but can be viewed in the website version3 of this
document.

from py_alf.analysis import analysis
for directory in dirs:

analysis(directory, custom_obs=custom_obs, always=True)

2 https://docs.python.org/3/library/pickle.html#module-pickle
3 https://purl.org/diss-jschwab

A.2. pyALF Example 153

https://docs.python.org/3/library/pickle.html#module-pickle
https://purl.org/diss-jschwab

Dissertation Jonas Schwab

A.2.2.5 Read analysis results

Read all the res.pkl files and combine them in a single pandas DataFrame4, called res.

from py_alf.ana import load_res
res = load_res(dirs)

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.
↪5/Temp_0

No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.

↪5/Temp_1
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.

↪5/Temp_2
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.

↪5/Temp_3
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/

↪Temp_0
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/

↪Temp_1
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/

↪Temp_2
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/

↪Temp_3
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/

↪Temp_0
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/

↪Temp_1
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/

↪Temp_2
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/

↪Temp_3
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/

↪Temp_0
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/

↪Temp_1
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/

↪Temp_2
No orbital locations saved.
./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/

↪Temp_3
No orbital locations saved.

The printout of the following command is again hidden, but can be viewed in the website version5 of this document.

res

4 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
5 https://purl.org/diss-jschwab

154 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://purl.org/diss-jschwab

Dissertation Jonas Schwab

A.2.2.6 Plot order parameter

fig, ax = plt.subplots(constrained_layout=True)
for L in [4, 6, 8, 10]:

df = res[res.l1 == L].sort_values(by='ham_h')
ax.errorbar(df.ham_h, df.m_scal0, df.m_scal0_err, label=f'L={L}')

ax.legend()
ax.set_xlabel('Transverse field h')
ax.set_ylabel('$S(\boldsymbol{k}=0)$');

A.2.2.7 Plot RG-invariant quantities

RG-invariant quantities behave at critical point as:

𝑅 = 𝑓(𝐿𝑧/𝛽, (ℎ − ℎc)𝐿1/𝜈, 𝐿−𝜔)

Dismissing dependence on 𝛽 and finite size corrections:

𝑅 = 𝑓((ℎ − ℎc)𝐿1/𝜈) (1.7)

Therefore, they should cross for different system sizes at ℎ = ℎc.

fig, axs = plt.subplots(1, 3, constrained_layout=True, figsize=(7, 2.5))
for L in [4, 6, 8, 10]:

df = res[res.l1 == L].sort_values(by='ham_h')
for obs_name, ylabel, ax in zip(['R_S', 'R_chi', 'B'],

[r'R_S', r'R_χ', r'B'],
axs):

ax.errorbar(
df.ham_h, df[obs_name], df[obs_name+'_err'], label=f'L={L}')

(continues on next page)

A.2. pyALF Example 155

Dissertation Jonas Schwab

(continued from previous page)
ax.set_xlabel('Transverse field h')
ax.set_ylabel(ylabel)

ax.legend();

A.2.2.8 Data collapse

I demonstrate here briefly how one can perform a data collapse. The amount of data is too little and the system sizes
too small to get meaningful results, but the overall approach can still be presented well.

A.2.2.8.1 Manual data collapse

The first step is to manually vary the parameters, in this case ℎc and 𝑎 = 1/𝜈, to collapse the data. The results can
then be used as starting parameters of the automatic data collapse in the next step.

hc = 3.15
a = 1.4 # a=1/nu
fig, axs = plt.subplots(1, 3, constrained_layout=True, figsize=(7, 2.5))
for L in [4, 6, 8, 10]:

df = res[res.l1 == L].sort_values(by='ham_h')
for obs_name, ylabel, ax in zip(['R_S', 'R_chi', 'B'],

[r'R_S', r'R_χ', r'B'],
axs):

ax.errorbar((df.ham_h-hc)*L**a, df[obs_name],
df[obs_name+'_err'], label=f'L={L}')

ax.set_xlabel(r'$(h-h_{\rm c})*L^{1/\nu}$')
ax.set_ylabel(ylabel)

ax.legend();

156 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

A.2.2.8.2 Data collapse fit

See Appendix A.3 for the source code of collapse.

from collapse import collapse

The function func defines the scaling assumption of Eq. (1.7).

def func(L, x, dx, y, dy, par):
"""Scaling assumption of RG-invariant quantities
without corrections to scaling."""
xc = par[0]
a = par[1] # a=1/nu
x_scaled = (x-xc) * L**a
if dx is None:

dx_scaled = None
else:

dx_scaled = (x-xc) * L**a
y_scaled = y
dy_scaled = dy
return x_scaled, dx_scaled, y_scaled, dy_scaled

Performing automatic data collapse of 𝑅𝑆 for system sizes 𝐿 ∈ {4, 6, 8, 10} and starting parameters ℎc = 3.15,
1/𝜈 = 1.4 from the manual data collapse.

fig = plt.figure(constrained_layout=True, figsize=(4, 2.7))
plt.xlabel(r'$(h-h_{\rm c})L^{1/\nu}$')
plt.ylabel(r'R_S')
collapse(func, 'ham_h', 'R_S', res, Ls=[4, 6, 8, 10] , par0=[3.15, 1.3])

{'Ls': [4, 6, 8, 10],
'L0': 4,
'NL': 4,
'popt': array([3.19239096e+00, 1.28013715e+00, 9.08264521e-01, -1.67682563e-
↪02,

-1.24065522e-03, -3.29972113e-05]),
'perr': array([8.89780198e-03, 4.91240345e-03, 2.45520108e-03, 6.27747079e-04,

5.22775205e-05, 1.42967090e-06]),
'S': 1136.7062136799598}

The resulting data collapse does not look very good and the quality of fit function 𝑆 ≈ 1500, which should be of
order 1, is much too big.
Some likely reasons for this are:

A.2. pyALF Example 157

Dissertation Jonas Schwab

1. Too small system sizes.
2. Too few data points.
3. Too large fitting range, meaning to big values of ∣(ℎ − ℎc)𝐿1/𝜈∣.

We dismiss system sizes 𝐿 = 4 and restrict the data to (ℎ − ℎc,0)𝐿1/𝜈0 ∈ [−5, 10]. This leads to a much more
agreeable, but still too large 𝑆 ≈ 24. Furthermore, there are only 6 data points left and the result 1/𝜈 = 1.2 ± 0.1
is not in agreement with Section 2.8. Nevertheless, this might be the best that can be done with the available data in
terms of data collapses.

hc0 = 3.15
a0 = 1.3
df = res[(res['ham_h']-hc)*res.l1**a > -5]
df = df[(df['ham_h']-hc)*df.l1**a < 10]
fig = plt.figure(constrained_layout=True, figsize=(4, 2.7))
plt.xlabel(r'$(h-h_{\rm c})L^{1/\nu}$')
plt.ylabel(r'R_S')
collapse(func, 'ham_h', 'R_S', df, Ls=[6, 8, 10] , par0=[hc0, a0])

{'Ls': [6, 8, 10],
'L0': 6,
'NL': 3,
'popt': array([3.22588756e+00, 1.22585025e+00, 8.74205610e-01, -3.71090125e-
↪02,

-3.65818772e-03, 2.59712699e-05]),
'perr': array([0.04638255, 0.10616724, 0.0102565 , 0.00745803, 0.00196077,

0.00023591]),
'S': 26.630914312767914}

A.2.2.9 Plot correlation

A.2.2.9.1 Accessing elements of the dataframe

res.columns

Index(['beta', 'dtau', 'global_h', 'global_j', 'global_type', 'ham_chem',
'ham_h', 'ham_j', 'ham_t', 'ham_xi',
...
'IsingXT_tauK_err', 'IsingXT_tauR', 'IsingXT_tauR_err',
'IsingXT_tau_lattice', 'IsingZT_tauK', 'IsingZT_tauK_err',

(continues on next page)

158 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

(continued from previous page)
'IsingZT_tauR', 'IsingZT_tauR_err', 'IsingZT_tau_lattice', 'lattice'],

dtype='object', length=128)

res.index

Index(['./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.
↪25_h=2.5/Temp_0',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.
↪25_h=2.5/Temp_1',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.
↪25_h=2.5/Temp_2',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.
↪25_h=2.5/Temp_3',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.
↪25_h=2.5/Temp_0',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.
↪25_h=2.5/Temp_1',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.
↪25_h=2.5/Temp_2',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.
↪25_h=2.5/Temp_3',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.
↪25_h=2.5/Temp_0',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.
↪25_h=2.5/Temp_1',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.
↪25_h=2.5/Temp_2',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.
↪25_h=2.5/Temp_3',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.
↪25_h=2.5/Temp_0',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.
↪25_h=2.5/Temp_1',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.
↪25_h=2.5/Temp_2',

'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.
↪25_h=2.5/Temp_3'],

dtype='object')

item = res.loc['./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.
↪0_xi=0.25_h=2.5/Temp_0']

item

beta 40.0
dtau 0.1
global_h 3.0
global_j 1.0
global_type b''

...
IsingZT_tauK_err [[0.0008932302580056016, 0.0011906138182334284...
IsingZT_tauR [[0.5773744618389179, 0.5776504791744279, 0.57...
IsingZT_tauR_err [[0.0005925670020223004, 0.000599508043614475,...
IsingZT_tau_lattice {'L1': [7.071067811865475, 7.071067811865475],...
lattice {'L1': [7.071067811865475, 7.071067811865475],...
Name: ./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.

↪25_h=2.5/Temp_0, Length: 128, dtype: object

item['IsingZ_eqK']

A.2. pyALF Example 159

Dissertation Jonas Schwab

array([[[0.32638655, 0.34595176, 0.37585751, 0.40512372,
0.41848529, 0.40560553, 0.3758137 , 0.34585338,
0.32686855, 0.32000094, 0.34582087, 0.36959162,
0.40548 , 0.44284267, 0.4599152 , 0.44257476,
0.40533533, 0.36922645, 0.3460411 , 0.33724708,
0.37373131, 0.40447458, 0.45249519, 0.50672501,
0.53239187, 0.50668498, 0.4533181 , 0.4044087 ,
0.37437927, 0.36392956, 0.40205248, 0.43922089,
0.50464484, 0.58204502, 0.62283904, 0.58161175,
0.50320508, 0.44007743, 0.40266863, 0.38967683,
0.41550708, 0.45576157, 0.52808854, 0.6214426 ,
58.38260793, 0.6214426 , 0.52808854, 0.45576157,
0.41550708, 0.40164649, 0.40266863, 0.44007743,
0.50320508, 0.58161175, 0.62283904, 0.58204502,
0.50464484, 0.43922089, 0.40205248, 0.38967683,
0.37437927, 0.4044087 , 0.4533181 , 0.50668498,
0.53239187, 0.50672501, 0.45249519, 0.40447458,
0.37373131, 0.36392956, 0.3460411 , 0.36922645,
0.40533533, 0.44257476, 0.4599152 , 0.44284267,
0.40548 , 0.36959162, 0.34582087, 0.33724708,
0.32686855, 0.34585338, 0.3758137 , 0.40560553,
0.41848529, 0.40512372, 0.37585751, 0.34595176,
0.32638655, 0.32000094, 0.31925968, 0.33890868,
0.36577437, 0.3931343 , 0.40544295, 0.3931343 ,
0.36577437, 0.33890868, 0.31925968, 0.31334392]]])

A.2.2.9.2 Creating Lattice object

from py_alf import Lattice

latt = Lattice(item['IsingZ_eq_lattice'])

A.2.2.9.3 Spin-Spin correlation deep in ordered phase

latt.plot_k(item['IsingZ_eqK'][0,0])

160 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

A.2.2.9.4 Spin-Spin correlation in disordered phase

latt.plot_k(res.loc[
'./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_

↪h=2.5/Temp_3',
'IsingZ_eqK'][0,0])

A.2. pyALF Example 161

Dissertation Jonas Schwab

A.2.2.10 Fermionic dispersion

See Appendix A.4 for source code of fit_green_tau.

from fit_green_tau import fit_green_tau

dic = {}
for i in res.index:

print(i)
dtau = res.loc[i, 'dtau']
Green = res.loc[i, 'Green_tauK']
dGreen = res.loc[i, 'Green_tauK_err']
(N_tau, N) = Green.shape
taus = np.arange(0., N_tau*dtau, dtau)
dic[i] = np.empty((N, 2))
for n in range(N):

print(f'{n} out of {N}')
G = Green[:, n]
dG = dGreen[:, n]
dic[i][n] = fit_green_tau(taus, G, dG, plot=False)

res['gap'] = pd.Series(dic)

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.
↪5/Temp_0

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.
↪5/Temp_1

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.
↪5/Temp_2

162 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=10_L2=10_beta=40.0_xi=0.25_h=2.
↪5/Temp_3

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/
↪Temp_0

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/
↪Temp_1

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/
↪Temp_2

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=4_L2=4_beta=16.0_xi=0.25_h=2.5/
↪Temp_3

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/
↪Temp_0

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/
↪Temp_1

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/
↪Temp_2

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=6_L2=6_beta=24.0_xi=0.25_h=2.5/
↪Temp_3

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/
↪Temp_0

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/
↪Temp_1

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/
↪Temp_2

./ALF_data/temper_Nematic_Dirac_Model_vers=1_L1=8_L2=8_beta=32.0_xi=0.25_h=2.5/
↪Temp_3

We plot the determined dispersion for system sizes 𝐿 = 10 and mark the points 𝒌 = (𝜋/2, 𝜋/2) and 𝒌 =
(𝜋/2, −𝜋/2), which are the locations of the Dirac points in the disordered phase. One can see how the Dirac cones
are displaced in the ordered phase at ℎ = 2.5, 3.0, while they remain in place in the ordered phase at ℎ = 3.5, 4.0.
Notably, the simulation at ℎ = 2.5 features ⟨ ̂𝑠𝑧⟩ < 0 and ℎ = 3.0 features ⟨ ̂𝑠𝑧⟩ > 0 (cf. Fig. 2.1(a1)), which is
random. The displaced Dirac cones are only observable because the simulation is not fully ergodic and randomly
“chooses” one of the two symmetry broken phases.

df = res[res.l1 == 10]
latt = Lattice([10, 10], [10, -10], [1, 1], [1, -1])
for i in df.index:

latt.plot_k(res.loc[i, 'gap_lazy'])
plt.title(f'$h = {res.loc[i, "ham_h"]}$')
p = np.pi/2
plt.plot([p, p], [p, -p], 'o', color='red')

A.2. pyALF Example 163

Dissertation Jonas Schwab

164 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

df = res[res.l1 == 10]
latt = Lattice([10, 10], [10, -10], [1, 1], [1, -1])

(continues on next page)

A.2. pyALF Example 165

Dissertation Jonas Schwab

(continued from previous page)
for i in df.index:

latt.plot_k(res.loc[i, 'gap'][:, 0])
plt.title(f'$h = {res.loc[i, "ham_h"]}$')
p = np.pi/2
plt.plot([p, p], [p, -p], 'o', color='red')

166 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

A.2. pyALF Example 167

Dissertation Jonas Schwab

A.3 Source code of data collapse functions

Listing 1.1 implements a data collapse of the form

̃𝑦𝑖 = 𝑝 (̃𝑥𝑖) ,

where 𝑝 is a polynomial and ̃𝑥𝑖, ̃𝑦𝑖 are obtained with the scaling assumption

̃𝑥𝑖, 𝜎�̃�𝑖
, ̃𝑦𝑖, 𝜎 ̃𝑦𝑖

= 𝑓 (𝐿𝑖, 𝑥𝑖, 𝜎𝑥𝑖
, 𝑦𝑖, 𝜎𝑦𝑖

, 𝑝𝑎𝑟)

By minimizing the quality of fit function

𝑆 = 1
𝑁 ∑

𝑖

[𝑝 (̃𝑥𝑖) − ̃𝑦𝑖]
2

𝜎2
̃𝑦𝑖

+ 𝑝′ (̃𝑥𝑖)
2 𝜎2

�̃�𝑖

trough varying 𝑝 and 𝑝𝑎𝑟. The uncertainty of the results are estimated with a bootstrap resampling scheme [118].

Listing 1.1: Content of file collapse.py that implements an automatic
data collapse.

1 """Provides functions for data collapse."""
2 # pylint: disable=invalid-name
3 # pylint: disable=redefined-outer-name
4 # pylint: disable=too-many-arguments
5

6 import numpy as np
7 from numpy.random import default_rng
8 from numpy.polynomial.polynomial import polyval, polyfit, polyder
9 from scipy.optimize import minimize

(continues on next page)

168 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

(continued from previous page)
10 import matplotlib.pyplot as plt
11

12

13 def collapse(func, x_name, y_name, df, Ls, par0,
14 N_boot=100, plot=True, rank=3, x_err=False,
15 verbose=False, size_name='l1'):
16 """Perform a data collapse.
17

18 Rescales data according to `func` and fits polynomial of rank `rank`.
19 Minimizes a quality of fit function to achieve data collapse and
20 estimates error through bootstrap method.
21

22 Parameters
23 ----------
24 func : function
25 Function func(L, x, dx, y, dy, par) defining the rescaling to achieve
26 data collapse, with:
27

28 Parameters
29 ----------
30 L: int
31 system size.
32 x: array of floats
33 x values.
34 dx: array of float or None
35 Error of x values
36 y: array of floats
37 y values.
38 dy: array of float or None
39 Error of y values.
40 par: List of float
41 parameters for data collapse, e.g. critical field, exponents.
42

43 Returns
44 -------
45 x_scaled : array of float
46 Scaled x values.
47 dx_scaled : array of float or None
48 Scaled x error.
49 y_scaled : array of float
50 Scaled y values.
51 dy_scaled : array of float
52 Scaled y error.
53 x_name : str
54 Name of x variable.
55 y_name : str
56 Name of y variable.
57 df : pandas DataFrame
58 Contains data.
59 Ls : list of int
60 System sizes to consider.
61 par0 : List of floats
62 Starting parameters for data collapse.
63 N_boot : int, default=100
64 Number of bootstrap bins to generate for error analysis.
65 plot : bool, default=True
66 Plot data collapse via matplotlib.
67 rank : integer, default=3
68 Rank of polynomial to fit.
69 x_err : bool, default=False
70 Consider x errors.

(continues on next page)

A.3. Source code of data collapse functions 169

Dissertation Jonas Schwab

(continued from previous page)
71 verbose : bool, default=False
72 Be verbose.
73 size_name : str, default="l1"
74 Name of parameter corresponding to system size.
75

76 Returns
77 -------
78 {
79 'Ls': Ls,
80 'L0': Ls[0],
81 'NL': len(Ls),
82 'popt': popt,
83 'perr': perr,
84 'S': S,
85 }
86 with :
87 Ls : list of int
88 Input argument Ls
89 popt : array of float
90 Best parameters found for data collapse, including parameters for
91 polynomial fit function.
92 perr : array of float
93 Standard error of data collapse parameters.
94 S : float
95 Quality of data collapse. Smaller is better, should be of order 1.
96 """
97 data = Data_obj(df, x_name, y_name, Ls, x_err=x_err, size_name=size_name)
98

99 if x_err:
100 def quality(par, Npar, L, x, dx, y, dy):
101 """The quality of fit function."""
102 der = polyder(par[Npar:])
103 S = 0.
104 n = 0
105 for L_, x_, dx_, y_, dy_ in zip(L, x, dx, y, dy):
106 x_scaled, dx_scaled, y_scaled, dy_scaled = \
107 func(L_, x_, dx_, y_, dy_, par[:Npar])
108 # Alternative quality of fit function.
109 # S += ((polyval(x_scaled, par[Npar:]) - y_scaled)**2
110 # / (dy_scaled**2 + (polyval(x_scaled, der)*dx_scaled)**2)).

↪mean()
111 # n += 1
112 S += ((polyval(x_scaled, par[Npar:]) - y_scaled)**2
113 / (dy_scaled**2 + (polyval(x_scaled, der)*dx_scaled)**2)).

↪sum()
114 n += len(x_scaled)
115 return S / n
116 else:
117 def quality(par, Npar, L, x, dx, y, dy):
118 """The quality of fit function."""
119 S = 0.
120 n = 0
121 for L_, x_, dx_, y_, dy_ in zip(L, x, dx, y, dy):
122 x_scaled, dx_scaled, y_scaled, dy_scaled = \
123 func(L_, x_, dx_, y_, dy_, par[:Npar])
124 # Alternative quality of fit function.
125 # S += ((polyval(x_scaled, par[Npar:]) - y_scaled)**2
126 # / dy_scaled**2).mean()
127 # n += 1
128 S += ((polyval(x_scaled, par[Npar:]) - y_scaled)**2
129 / dy_scaled**2).sum()

(continues on next page)

170 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

(continued from previous page)
130 n += len(x_scaled)
131 return S / n
132

133 # Initial fit.
134 Npar = len(par0)
135 x_scaled, dx_scaled, y_scaled, dy_scaled = func(*data.get_data_flat(), par0)
136 if x_err:
137 der = polyder(p)
138 p = polyfit(x_scaled, y_scaled,
139 w=1/(dy_scaled**2 + (polyval(x, der)*dx_scaled)**2),
140 deg=rank, full=False)
141 else:
142 p = polyfit(x_scaled, y_scaled, w=1/dy_scaled**2, deg=rank, full=False)
143 L, x, dx, y, dy = data.get_data()
144 res0 = minimize(quality, (*par0, *p), args=(Npar, L, x, dx, y, dy))
145 if verbose:
146 print(res0.fun)
147

148 # Return results of initial fit, if no bootstrap error estimation.
149 if N_boot == 0:
150 if plot:
151 plot_collapse(func, x_name, y_name, df, Ls,
152 res0.x[:Npar], rank=rank, x_err=x_err, size_name=size_

↪name)
153 return {'Ls': Ls, 'L0': Ls[0], 'NL': len(Ls),
154 'popt': res0.x, 'perr': [None]*len(res0.x), 'S': res0.fun}
155

156 # Execute bootstrap error estimation.
157 xs = np.empty((N_boot, len(res0.x)))
158 for n in range(N_boot):
159 L, x, dx, y, dy = data.generate_data()
160 res = minimize(quality, res0.x, args=(Npar, L, x, dx, y, dy))
161 xs[n] = res.x
162 popt = np.mean(xs, 0)
163 perr = np.std(xs, 0)
164 L, x, dx, y, dy = data.get_data()
165 S = quality(popt, Npar, L, x, dx, y, dy)
166

167 if plot:
168 plot_collapse(func, x_name, y_name, df, Ls, popt[:Npar],
169 rank=rank, x_err=x_err, size_name=size_name)
170 return {'Ls': Ls, 'L0': Ls[0], 'NL': len(Ls),
171 'popt': popt, 'perr': perr, 'S': S}
172

173

174 def plot_collapse(
175 func, x_name, y_name, df, Ls, par, rank=3, x_err=False,
176 fmts=None, size_name='l1'):
177 """Plot data collapse via matplotlib. See :func:`collapse`."""
178 if fmts is None:
179 fmts = {4: '<', 6: '>', 8: '^', 10: 'v', 12: '*',
180 14: 'x', 16: 'o', 18: '+', 20: '.'}
181 data = Data_obj(df, x_name, y_name, Ls, x_err=x_err, size_name=size_name)
182 x_min = np.inf
183 x_max = -np.inf
184

185 for L, x, dx, y, dy in zip(*data.get_data()):
186 x_scaled, dx_scaled, y_scaled, dy_scaled = func(L, x, dx, y, dy, par)
187 x_min = min(x_min, x_scaled.min())
188 x_max = max(x_max, x_scaled.max())
189 plt.errorbar(x_scaled, y_scaled, dy_scaled, xerr=dx_scaled,

(continues on next page)

A.3. Source code of data collapse functions 171

Dissertation Jonas Schwab

(continued from previous page)
190 fmt=fmts[L], label=f'L={L}')
191

192 L, x, dx, y, dy = data.get_data_flat()
193 x_scaled, dx_scaled, y_scaled, dy_scaled = func(L, x, dx, y, dy, par)
194 if x_err:
195 der = polyder(p)
196 p = polyfit(x_scaled, y_scaled,
197 w=1/(dy_scaled**2 + (polyval(x_scaled, der)*dx_scaled)**2),
198 deg=rank, full=False)
199 else:
200 p = polyfit(x_scaled, y_scaled, w=1/dy_scaled**2, deg=rank, full=False)
201

202 x = np.linspace(x_min, x_max)
203 plt.plot(x, polyval(x, p))
204 plt.legend()
205

206

207 class Data_obj:
208 """Encapsulate data for bootstrap."""
209

210 def __init__(self, df, x_name, y_name, Ls, x_err=False, size_name='l1'):
211 self.x_err = x_err
212 self.len = 0
213 self.x = []
214 self.dx = []
215 self.y = []
216 self.dy = []
217 self.Ls = Ls
218 self.rng = default_rng()
219 for L in Ls:
220 df1 = df[df[size_name] == L]
221 self.len += len(df1)
222 self.x.append(np.array(df1[x_name]))
223 if x_err:
224 self.dx.append(np.array(df1[x_name+'_err']))
225 else:
226 self.dx.append(None)
227 self.y.append(np.array(df1[y_name]))
228 self.dy.append(np.array(df1[y_name+'_err']))
229

230 def get_data(self):
231 return self.Ls, self.x, self.dx, self.y, self.dy
232

233 def get_data_flat(self):
234 L = np.empty((self.len,))
235 x = np.empty((self.len,))
236 if self.x_err:
237 dx = np.empty((self.len,))
238 else:
239 dx = None
240 y = np.empty((self.len,))
241 dy = np.empty((self.len,))
242 i = 0
243 for L_temp, x_temp, dx_temp, y_temp, dy_temp in \
244 zip(self.Ls, self.x, self.dx, self.y, self.dy):
245 le = len(x_temp)
246 L[i:i+le] = L_temp
247 x[i:i+le] = x_temp
248 if self.x_err:
249 dx[i:i+le] = dx_temp
250 y[i:i+le] = y_temp

(continues on next page)

172 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

(continued from previous page)
251 dy[i:i+le] = dy_temp
252 i += le
253 return L, x, dx, y, dy
254

255 def generate_data(self):
256 y_generated = []
257 for y, dy, in zip(self.y, self.dy):
258 y_generated.append(self.rng.normal(loc=y, scale=dy))
259

260 if self.x_err:
261 x_generated = []
262 for x, dx, in zip(self.x, self.dx):
263 x_generated.append(self.rng.normal(loc=x, scale=dx))
264 else:
265 x_generated = self.x
266

267 return self.Ls, x_generated, self.dx, y_generated, self.dy

A.4 Source code for exponential fit of Green function

Listing 1.2: Content of file fit_green_tau.py containing the source
code used to fit the time-displaced Green function with an exponential de-
cay for determining the single particle gap. See also Section 2.7.2.1 for a
derivation of the exponential decay and Appendix A.2.2.10 demonstrates
how to apply the fitting function.

1 """Fit time-displaced Green function exponentially to determine
2 single particle gap."""
3 # pylint: disable=invalid-name
4

5 import numpy as np
6 from scipy.optimize import curve_fit
7

8

9 def fit_green_tau(taus, G, dG, plot=False):
10 """Fit time-displaced Green function exponentially to determine
11 single particle gap.
12

13 Parameters
14 ----------
15 taus : array-like object
16 Tau values.
17 G : array-like object
18 Green function values
19 dG : array-like object
20 Standard errors of Green functions
21 plot : bool, default=False
22 Plot G(tau).
23

24 Returns
25 -------
26 gap, dgap : floats
27 Single particle gap and standard error.
28 """
29 N_tau = len(G)
30

(continues on next page)

A.4. Source code for exponential fit of Green function 173

Dissertation Jonas Schwab

(continued from previous page)
31 def func1(x, a, b):
32 return a*np.exp(-b*x)
33

34 def func2(x, a, b):
35 return a*np.exp(b*(x-taus[-1]))
36

37 if plot:
38 import matplotlib.pyplot as plt
39 fig, (ax, ax2) = plt.subplots(1, 2, figsize=(14, 5))
40 ax.errorbar(x=taus, y=G, yerr=dG)
41 ax.set_yscale('log')
42

43 W = N_tau//2
44 for i in range(N_tau//2):
45 if G[i]-dG[i] < 1E-7:
46 W = i
47 # print(i)
48 break
49 i1 = W//2 - 5
50 i2 = i1+10
51 popt, pcov, i1_out, i2_out, chi_squared, reduced_chi_squared, accepted = \
52 try_fit(func1, taus, G, dG, i1, i2)
53 gap1 = popt[1]
54 dgap1 = np.sqrt(pcov[1,1])
55 if plot:
56 # print('left')
57 ax.errorbar(
58 x=taus[i1_out:i2_out],
59 y=G[i1_out:i2_out],
60 yerr=dG[i1_out:i2_out]
61)
62 title = f'{accepted} {i1_out} {i2_out} {i2_out-i1_out} {reduced_chi_

↪squared}'
63 ax2.errorbar(x=[1], y=[gap1], yerr=[dgap1])
64

65 W = N_tau//2
66 for i in range(N_tau//2):
67 if G[-i]-dG[-i] < 1E-7:
68 W = i
69 # print(i)
70 break
71 i2 = N_tau-W//2+5
72 i1 = i2-10
73 out = try_fit(func2, taus, G, dG, i1, i2)
74 # print(out)
75 if out is not None:
76 popt, pcov, i1_out, i2_out, chi_squared, reduced_chi_squared, accepted =␣

↪out
77 gap2 = popt[1]
78 dgap2 = np.sqrt(pcov[1,1])
79 gap = np.mean([gap1, gap2])
80 dgap = (np.max([gap1+dgap1, gap2+dgap2]) - np.min([gap1-dgap1, gap2-dgap2]))/2
81 if plot:
82 # print('right')
83 ax.errorbar(x=taus[i1_out:i2_out],
84 y=G[i1_out:i2_out],
85 yerr=dG[i1_out:i2_out])
86 ax.set_title(f'{title}\n{accepted} {i1_out} {i2_out} ' +
87 f'{i2_out-i1_out} {reduced_chi_squared}')
88 ax2.errorbar(x=[2], y=[gap2], yerr=[dgap2])
89 ax2.errorbar(x=[3], y=[gap], yerr=[dgap])

(continues on next page)

174 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

(continued from previous page)
90 plt.show()
91 plt.close()
92

93 return gap, dgap
94

95

96 def try_fit(func, x, y, dy, i1, i2, popt=None):
97 """Fit function func to data x[i1:i2], y[i1:i2], dy[i1:i2] and alternately
98 decrease i1 and increase i2 until some standards for the quality of fit are
99 no more fulfilled."""
100 this_side = 1
101 side1_fin = False
102 side2_fin = False
103 accepted = False
104

105 while True:
106 if i1 < 0 or i2 >= len(y):
107 return popt, pcov, i1, i2, chi_squared, reduced_chi_squared, accepted
108 try:
109 popt, pcov = curve_fit(func, x[i1:i2], y[i1:i2], sigma=dy[i1:i2],
110 absolute_sigma=True, p0=popt)
111 except RuntimeError as curve_fit_failed:
112 try:
113 return popt, pcov, i1, i2, chi_squared, reduced_chi_squared,␣

↪accepted
114 except NameError:
115 raise Exception("curve_fit did not converge") from curve_fit_failed
116

117 # ================== Estimate quality of fit ==================
118 chi_squared = np.sum(((func(x[i1:i2], *popt)-y[i1:i2])/dy[i1:i2])**2)
119 reduced_chi_squared = (chi_squared)/(len(x[i1:i2])-len(popt))
120

121 n_ges = 0
122 n_in_h = 0
123 n_in = 0
124 n_in_4 = 0
125 n_end1 = 0
126 n_end2 = 0
127

128 for i in range(i1, i2):
129 n_ges = n_ges + 1
130 if abs(func(x[i], *popt) - y[i]) < 0.7 * dy[i]:
131 n_in_h = n_in_h + 1
132 if abs(func(x[i], *popt) - y[i]) < 4 * dy[i]:
133 n_in_4 = n_in_4 + 1
134 if abs(func(x[i], *popt) - y[i]) < dy[i]:
135 n_in = n_in + 1
136

137 for i in range(i1,i1+3):
138 if abs(func(x[i], *popt) - y[i]) < 2*dy[i]:
139 n_end1 = n_end1 + 1
140

141 for i in range(i2-3,i2):
142 if abs(func(x[i], *popt) - y[i]) < 2*dy[i]:
143 n_end2 = n_end2 + 1
144

145 ratio_h = n_in_h / n_ges
146 ratio = n_in / n_ges
147 ratio_4 = n_in_4 / n_ges
148

149 # line = "Fitting from {} to {}: {:5.2f} {:5.2f} "

(continues on next page)

A.4. Source code for exponential fit of Green function 175

Dissertation Jonas Schwab

(continued from previous page)
150 # "{} {:5.2f} {:5.2f} {:5.2f} {} {}"
151 # line = line.format(i1, i2, chi_squared, reduced_chi_squared,
152 # n_ges, ratio_h, ratio, ratio_4, n_end1, n_end2)
153 # print(line)
154

155 # ====== Set minimal standard for quality of fit ======
156 success = ((ratio > 0.68) and (ratio_4 > 0.99)
157 and (n_end1 > 1) and (n_end2 > 1))
158

159 if not success:
160 # print('rejected!')
161 if this_side == 1:
162 side1_fin = True
163 i1 = i1 + 1
164 elif this_side == 2:
165 side2_fin = True
166 i2 = i2 - 1
167 else:
168 # print('accepted')
169 accepted = True
170

171 if i1 == 0:
172 side1_fin = True
173 if i2 == len(x)-1:
174 side2_fin = True
175

176 if this_side == 1 and side2_fin is False:
177 i2 = i2+1
178 this_side = 2
179 elif this_side == 2 and side1_fin is False:
180 i1 = i1-1
181 this_side = 1
182 elif side2_fin is False:
183 i2 = i2+2
184 this_side = 2
185 elif side1_fin is False:
186 i1 = i1-1
187 this_side = 1
188 else:
189 return popt, pcov, i1, i2, chi_squared, reduced_chi_squared, accepted

A.5 Other values for 𝑁𝜎 and 𝜉

In this appendix, we report the result of additional simulations for different values of 𝑁𝜎 and 𝜉. For the 𝐶2𝑣 model,
we show how at higher couplings, 𝜉, discontinuities occur due to level crossings, as already described in Section 2.3.
For the 𝐶4𝑣 model, we show that the transition stays continuous for all considered parameters.

176 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

A.5.1 The 𝐶2𝑣 model

Fig. A3 shows the structure factor correlation ratio and derivative of free energy for the 𝐶2𝑣 model at 𝑁𝜎 = 4
and 𝜉 ∈ {0.25, 0.4, 0.5}. For these parameters we observe a continuous phase transition. Fig. A4 plots the same
observables for 𝑁𝜎 = 2. For lower values of the coupling 𝜉 the curves are also smooth, but at 𝜉 = 0.5 discontinuities
appear, which get more pronounced at 𝜉 = 0.75. At 𝜉 = 0.75, one can observe multiple discontinuities for a single
system size, e.g. at ℎ ≈ 4.2 and ℎ ≈ 4.4 for 𝐿 = 20. These discontinuities occur due to level crossings, as already
described in the mean field part in Section 2.3. As shown in Fig. A4(d,f) and elaborated in the mean field section,
they can be avoided by twisting the boundary conditions of the fermionic degrees of freedom.

Fig. A3: Structure factor correlation ratio and derivative of free energy for the 𝐶2𝑣 model at 𝑁𝜎 = 4 and 𝜉 ∈
{0.25, 0.4, 0.5}. The data is consistent with continuous transitions.

A.5.2 The 𝐶4𝑣 model

Fig. A5 and Fig. A6 have the same layout as the previous figures and show only continuous transitions for various
combinations of 𝑁𝜎 ∈ {1, 2}, 𝜉 ∈ {0.5, 0.75, 1, 2}. We also show data at 𝜉 = 0, which corresponds to the
transverse-field Ising model.

A.5. Other values for 𝑁𝜎 and 𝜉 177

Dissertation Jonas Schwab

Fig. A4: Structure factor correlation ratio and derivative of free energy for the 𝐶2𝑣 model at 𝑁𝜎 = 2 and 𝜉 ∈
{0.25, 0.4, 0.5, 0.75}. At 𝜉 = 0.5 and 𝜉 = 0.75 discontinuities due to level crossing emerge. They can be avoided
by twisting the boundary conditions of the fermionic degrees of freedom.

178 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

Dissertation Jonas Schwab

Fig. A5: Structure factor correlation ratio and derivative of free energy for the𝐶4𝑣 model at𝑁𝜎 = 1 and 𝜉 ∈ {0, 1, 2}.
The data shows continuous transitions.

Fig. A6: Structure factor correlation ratio and derivative of free energy of the 𝐶4𝑣 model at 𝑁𝜎 = 2 and 𝜉 ∈
{0.5, 0.75, 2}. The data shows continuous transitions.

A.5. Other values for 𝑁𝜎 and 𝜉 179

Dissertation Jonas Schwab

180 Appendix A. Appendix to “Nematic quantum criticality in Dirac systems”

APPENDIX

B

APPENDIX TO “PHASE DIAGRAM OF THE SPIN 𝑆, SU(𝑁)
ANTIFERROMAGNET ON A SQUARE LATTICE”

The appendix for Chapter 3.

Contents

• Appendix to “Phase diagram of the spin 𝑆, SU(𝑁) antiferromagnet on a square lattice”

– The quadratic Casimir eigenvalue in terms of the Young tableau

– Bound on the eigenvalue of the quadratic Casimir operator

– Systematic errors

– Bounds on the bond observable

B.1 The quadratic Casimir eigenvalue in terms of the Young
tableau

In this appendix, we discuss the relation between the Young tableau of an irreducible representation and the corre-
sponding eigenvalue of the quadratic Casimir operator. For an irreducible representation, whose Young tableau has
𝑛𝑙 rows of length {𝑙𝑖} and 𝑛𝑐 columns of length {𝑐𝑖}, the eigenvalue of the quadratic Casimir operator is [99]

𝐶 = 1
2 [𝑟 (𝑁 − 𝑟

𝑁) +
𝑛𝑙

∑
𝑖

𝑙2𝑖 −
𝑛𝑐

∑
𝑖

𝑐2
𝑖] , (2.1)

where 𝑟 = ∑𝑖 𝑙𝑖 = ∑𝑖 𝑐𝑖 is the total number of boxes.
In this appendix, we also derive Eq. (2.1), which is stated in the Appendix of Ref. [99] without an explicit proof.
First, we notice that in Eq. (2.1) there is an implicit choice of normalization. As we show below, such a normalization
is consistent with Eq. (3.10).
For an irreducible representation, the value of 𝐶 can be easily computed with Weyl’s formula [94]1,

𝐶 = ⟨Λ|Λ + 2𝛿⟩, (2.2)

where Λ is the maximum weight of the representation and 𝛿 the Weyl vector. In the Dynkin representation the metric
tensor of the scalar product is, up to a normalization 𝑁 , the inverse of the transpose of the Cartan matrix 𝐴 [94],

𝐺𝑖𝑗 = 𝑁 [(𝐴𝑇)−1]
𝑖𝑗

,

[(𝐴𝑇)−1]
𝑖𝑗

= min(𝑖, 𝑗) − 𝑖𝑗
𝑁 ,

(2.3)

1 The Weyl’s formula for the Casimir element, Eq. (2.2), should not be confused with the Weyl’s formula for the dimension of an irreducible
representation, Eq. (3.4).

181

Dissertation Jonas Schwab

and the Weyl vector is 𝛿 = (1, 1, … , 1). To fix the normalization 𝑁 , we compute 𝐶 for the defining representation,
and match it with Eq. (3.10). For the defining representation, the maximum Dynkin weight is Λ𝛼𝑖

= 𝛿𝑖,1, hence

𝐶 = 𝑁
𝑁−1
∑
𝑖,𝑗=1

𝛿𝑖,1 [min(𝑖, 𝑗) − 𝑖𝑗
𝑁] (𝛿𝑗,1 + 2)

= 𝑁 𝑁2 − 1
𝑁 .

(2.4)

On the other hand, by taking the trace on both hand sides of Eq. (3.10),𝐶 is readily computed as𝐶 = (𝑁2−1)/(2𝑁).
Therefore the normalization constant is 𝑁 = 1/2.
Employing Eq. (2.2), we first compute ⟨Λ|Λ⟩. Using Eq. (3.2)

⟨Λ|Λ⟩ =
𝑁−1
∑
𝑖,𝑗=1

(𝑙𝑖 − 𝑙𝑖+1) 𝐺𝑖𝑗 (𝑙𝑗 − 𝑙𝑗+1) , (2.5)

where the metric tensor 𝐺𝑖𝑗 is given in Eq. (2.3). By developing the products and employing change of variables
𝑖 → 𝑖 − 1, 𝑗 → 𝑗 − 1, Eq. (2.5) can be written as

⟨Λ|Λ⟩ =𝑙1𝐺11𝑙1

+ 𝑙1
𝑁−1
∑
𝑗=2

(𝐺1,𝑗 − 𝐺1,𝑗−1) 𝑙𝑗

+
𝑁−1
∑
𝑖=2

𝑙𝑖 (𝐺𝑖,1 − 𝐺𝑖−1,1) 𝑙1

+
𝑁−1
∑
𝑖,𝑗=2

𝑙𝑖 (𝐺𝑖,𝑗 − 𝐺𝑖−1,𝑗 − 𝐺𝑖,𝑗−1 + 𝐺𝑖−1,𝑗−1) 𝑙𝑗,

(2.6)

where we have used that 𝑙𝑁 = 0 for Young tableaux of 𝔰𝔲(𝑁) representations. Using Eq. (2.3), we have

𝐺1,𝑗 − 𝐺1,𝑗−1 = 𝐺𝑖,1 − 𝐺𝑖−1,1 = − 1
2𝑁 , (2.7)

where we have employed the normalization𝑁 = 1/2 obtained after Eq. (2.4). Further, using Eq. (2.3), the difference
in the parenthesis in the last term of Eq. (2.6) is computed as

𝐺𝑖,𝑗 − 𝐺𝑖−1,𝑗 − 𝐺𝑖,𝑗−1 + 𝐺𝑖−1,𝑗−1 =
1
2[min(𝑖, 𝑗) − min(𝑖 − 1, 𝑗)

− min(𝑖, 𝑗 − 1) − min(𝑖 − 1, 𝑗 − 1) − 1
𝑁].

(2.8)

By enumerating the various cases, it is easy to see that

min(𝑖, 𝑗) − min(𝑖 − 1, 𝑗) − min(𝑖, 𝑗 − 1) − min(𝑖 − 1, 𝑗 − 1) = 𝛿𝑖𝑗. (2.9)

Using Eqs. (2.7), (2.8) and (2.9) in Eq. (2.6), we obtain the first term in Weyl’s formula,

⟨Λ|Λ⟩ =𝑙21
2 (1 − 1

𝑁) − 1
𝑁 𝑙1 (𝑟 − 𝑙1)

+ 1
2

𝑁−1
∑
𝑖=1

𝑙2𝑖 − 1
2𝑙21 + 1

2𝑁 (𝑟 − 𝑙1)2

=1
2 (

𝑛𝑙

∑
𝑖=1

𝑙2𝑖 − 𝑟2

𝑁) ,

(2.10)

where 𝑟 = ∑𝑖 𝑙𝑖 is the total number of boxes and the sum over 𝑙2𝑖 can be restricted to the 𝑛𝑙 nonzero row lengths.

182 Appendix B. Appendix to spin 𝑆, SU(𝑁) antiferromagnet

Dissertation Jonas Schwab

To compute the second term ⟨Λ|2𝛿⟩ in Weyl’s formula, we use a different parametrization of Λ. Since in the Dynkin
representation the components of Λ𝛼𝑖

are positive integers [see Eq. (3.2)], we can parametrize Λ𝛼𝑖
as

Λ𝛼𝑖
=

𝑛𝑐

∑
𝑎=1

𝛿𝑖,𝑐𝑎
. (2.11)

The set {𝑐𝑎} represents the position of the rows in the corresponding Young tableau where the number of boxes
decreases on the following row. Such a decrease corresponds to the end of the column, hence {𝑐𝑎} are the column
lengths. Using Eq. (2.11) and Eq. (2.3) we have

⟨Λ|2𝛿⟩ = 1
2

𝑁−1
∑
𝑖,𝑗=1

𝑛𝑐

∑
𝑎,𝑏=1

(𝛿𝑖,𝑐𝑎
min(𝑖, 𝑗)2 − 𝛿𝑖,𝑐𝑎

𝑖𝑗
𝑁 2)

=
𝑛𝑐

∑
𝑎=1

𝑁−1
∑
𝑗=1

min(𝑐𝑎, 𝑗) −
𝑛𝑐

∑
𝑎=1

𝑁−1
∑
𝑗=1

𝑐𝑎𝑗
𝑁

(2.12)

The first sum in Eq. (2.12) can be written as
𝑛𝑐

∑
𝑎=1

𝑁−1
∑
𝑗=1

min(𝑐𝑎, 𝑗) =
𝑛𝑐

∑
𝑎=1

(
𝑐𝑎

∑
𝑗=1

𝑗 +
𝑁−1
∑

𝑗=𝑐𝑎+1
𝑐𝑎)

= (𝑁 − 1
2) 𝑟 − 1

2
𝑛𝑐

∑
𝑎=1

𝑐2
𝑎,

(2.13)

where we have used ∑𝑎 𝑐𝑎 = 𝑟. The second sum in Eq. (2.12) can be computed as

𝑛𝑐

∑
𝑎=1

𝑁−1
∑
𝑗=1

𝑐𝑎𝑗
𝑁 = 1

2𝑟(𝑁 − 1) (2.14)

Inserting Eqs. (2.13) and (2.14) in Eq. (2.12), we obtain the second term of Weyl’s formula

⟨Λ|2𝛿⟩ = 1
2 (𝑟𝑁 −

𝑛𝑐

∑
𝑎=1

𝑐2
𝑎) (2.15)

Finally, employing Eqs. (2.10) and (2.15) in Eq. (2.2) one obtains Eq. (2.1).
As is known from the rules of Young tableaux of 𝔰𝔲(𝑁) representations, columns of length 𝑁 can be deleted since
they correspond to an invariant under SU(𝑁). This is consistent with the formula of Eq. (2.1). Indeed, by adding to
a Young tableau a column of length 𝑁 , we have

𝑟 → 𝑟 + 𝑁,
𝑙𝑖 → 𝑙𝑖 + 1,

𝑛𝑐

∑
𝑖=1

𝑐2
𝑖 → 𝑁2 +

𝑛𝑐

∑
𝑖=1

𝑐2
𝑖 .

(2.16)

Inserting the substitutions of Eq. (2.16) in Eq. (2.1), one can check that the Casimir eigenvalue is left unchanged.
Finally, it is easy to check that in the case of the defining representation, whose Young tableau is a single box, Eq. (2.1)
gives the expected result, with the normalization consistent with Eq. (3.10).

B.2 Bound on the eigenvalue of the quadratic Casimir operator

The tensor product of 2𝑆 self-adjoint antisymmetric representations given in Eq. (3.16) decomposes into different
irreducible representations. In this appendix we prove that among those representations, the maximally symmetric
one of Fig. 3.2 has the maximum Casimir eigenvalue, which we compute.

B.2. Bound on the eigenvalue of the quadratic Casimir operator 183

Dissertation Jonas Schwab

Due to the rules for the composition of Young tableaux, each of the irreducible representations arising from the tensor
product has a Young tableau whose total number of boxes is 𝑟 ≤ (2𝑆)(𝑁/2) = 𝑁𝑆 and whose row lengths cannot
exceed 2𝑆, 𝑙𝑖 ≤ 2𝑆. Thus an upper bound for ∑𝑖 𝑙2𝑖 appearing in Eq. (2.1) is

𝑛𝑙

∑
𝑖

𝑙2𝑖 ≤
𝑛𝑙

∑
𝑖

2𝑆𝑙𝑖 = 2𝑆𝑟. (2.17)

This bound is saturated by

𝑙𝑖 = 2𝑆, 𝑛𝑙 = 𝑟/(2𝑆). (2.18)

On the other hand, an upper bound for the second sum in Eq. (2.1) is found using the Cauchy-Schwartz inequality on
the 𝑛𝑐−component vectors (𝑐1, … , 𝑐𝑛) and (1, … , 1):

(𝑐2
1 + … + 𝑐2

𝑛)(1 + … + 1) ≥ (𝑐1 + … + 𝑐𝑛)2. (2.19)

The number of columns in the Young tableau 𝑛𝑐 is bounded by 𝑛𝑐 = max({𝑙𝑖}) ≤ 2𝑆, and their sum is ∑ 𝑐𝑖 = 𝑟.
Hence, Eq. (2.19) gives

𝑛𝑐

∑
𝑖

𝑐2
𝑖 ≥ 𝑟2

𝑛𝑐
≥ 𝑟2

2𝑆 . (2.20)

This bound is saturated by

𝑐𝑖 = 𝑟/(2𝑆), 𝑛𝑐 = 2𝑆. (2.21)

Inserting Eqs. (2.17) and (2.20) in Eq. (2.1) we get

𝐶 ≤ 𝑁 + 2𝑆
2 (− 𝑟2

2𝑆𝑁 + 𝑟) ≤ 𝑁𝑆(2𝑆 + 𝑁)
4 , (2.22)

where the upper bound is obtained for 𝑟 = 𝑁𝑆. Together with Eqs. (2.18) and (2.21) this precisely corresponds to
the Young tableau of Fig. 3.2 Its Casimir eigenvalue is most easily computed using Weyl’s formula (Eq. (2.2)) and
Eq. (3.3), obtaining Eq. (3.22), which saturates the upper bound of Eq. (2.22). Alternatively, the Casimir eigenvalue
can be obtained from Eq. (2.1), and 𝑟 = 𝑁𝑆, 𝑙1 = 𝑙2 = … = 𝑙𝑁/2 = 2𝑆 and 𝑐1 = 𝑐2 = … = 𝑐2𝑆 = 𝑁/2.
Finally, we observe that, since the variables {𝑙𝑖} and {𝑐𝑖} in Eq. (2.1) are positive integers, as soon as we deviate
from the solution maximizing𝐶, we decrease the Casimir eigenvalue by a finite integer amount. In other words, there
is a finite gap 𝑂(1) in the eigenvalues of the quadratic Casimir operators between the subspace of the representation
of Fig. 3.2 and the other irreducible representations arising from the tensor product of 2𝑆 self-adjoint antisymmetric
representations.

B.3 Systematic errors

In this appendix we show that there is no explicit dependence on the magnitude of the Trotter error as a function of
𝑁 . To keep the notation simple, we will show this on the basis of the 𝑆 = 1/2 Hamiltonian where �̂�Casimir [see
Eq. (3.19))] as well as the orbital index can be omitted:

�̂�QMC =�̂�𝐽 + �̂�𝑈

= − 𝐽
2𝑁 ∑

⟨𝑖,𝑗⟩
{�̂�𝑖,𝑗, �̂�†

𝑖,,𝑗} + 𝑈
𝑁 ∑

𝑖
(�̂�𝑖 − 𝑁

2)
2 (2.23)

In this appendix, we have normalized the Hamiltonian by the factor 1
𝑁 , such that total energy differences defining

e.g. the spin gap [𝐸0(𝑆 = 1) − 𝐸0] remain constant in the large-𝑁 limit. In particular, with the mean-field ansatz
𝜒𝑖,𝑗 = 1

𝑁 ⟨�̂�𝑖,𝑗⟩ corresponding to the Affleck and Marston saddle point [119], the Hamiltonian reads:

�̂�MF = −𝐽
2 ∑

⟨𝑖,𝑗⟩
𝜒𝑖,𝑗�̂�†

𝑖,,𝑗 + 𝜒𝑖,𝑗�̂�𝑖,,𝑗. (2.24)

184 Appendix B. Appendix to spin 𝑆, SU(𝑁) antiferromagnet

Dissertation Jonas Schwab

20

30

40

50

60

70

80

E 0

6.57 + 1.96N

5 10 15 20 25 30 35 40
N

0.04

0.02

0.00

0.02

0.04

0.06

0.08

/E
0

Fig. B1: Scaling of systematic Δ𝜏 error for 𝐿 = 4, Θ = 2, and 𝑆 = 1/2. For each point, we simulated with a range
of different values for Δ𝜏 and fitted the energy to 𝐸(Δ𝜏) = 𝐸0 + 𝛼Δ𝜏

2.

In this large-𝑁 limit, one will check explicitly that the spin gap on a finite lattice is 𝑁 independent, and that the
energy is extensive in the volume, 𝑉 , and in 𝑁 . Since gaps are 𝑁 independent, at least in the large-𝑁 limit, it makes
sense comparing results at different 𝑁 but at constant temperature or projection parameter.
In the formulation of the AF QMC method, one introduces a checkerboard decomposition, where the interaction
terms are grouped into disjoint families of commuting operators. This factorization introduces a Trotter discretization
error, whose𝑁−dependence we estimate as follows. To render the calculation as simple as possible, we will consider
as an illustration a one-dimensional chain. In this case, the checkerboard decomposition in even and odd bonds, 𝑏,
allows us to write the Hamiltonian as:

�̂� = ∑
𝑏∈𝐴

ℎ̂𝑏
⏟
≡�̂�𝐴

+ ∑
𝑏∈𝐵

ℎ̂𝑏
⏟
≡�̂�𝐵

. (2.25)

Both �̂�𝐴 and �̂�𝐵 are sums of commuting terms. ℎ̂𝑏 corresponds to a local Hamiltonian, such that it is extensive in
𝑁 but intensive in volume.
An explicit form of ℎ̂𝑏 on a bond with legs 𝑖,𝑗 in the fermion representation would read: 1

𝑁 {�̂�(𝑖,𝑗), �̂�†
(𝑖,𝑗)}. Note

that to keep calculations as simple as possible, we implicitly consider a one-dimensional lattice in which �̂�𝐴 is a sum
of commuting terms. For the two-dimensional case, the checkerboard bond decomposition necessitates four terms.
We will use the symmetric Trotter decomposition,

𝑒−Δ𝜏�̂�+Δ𝜏3�̂�3 = 𝑒− Δ𝜏
2 �̂�𝐴𝑒−Δ𝜏�̂�𝐵𝑒− Δ𝜏

2 �̂�𝐴 + 𝑂 (Δ𝜏5) (2.26)

with �̂�3 = ([�̂�𝐴, [�̂�𝐴, �̂�𝐵]] + 2 [�̂�𝐵, [�̂�𝐵, �̂�𝐴]]) /24. Since �̂�𝐴 and �̂�𝐵 are sums of local operators, �̂�3 is
also a sum of local operators. Hence, �̂�3 is extensive in the volume. By explicitly computing the commutators, one
will also show, that �̂�3 is extensive in 𝑁 . Hence �̂�3 scales as �̂� . Note that for non-local Hamiltonians considered in
Ref. [120], this does not apply. We can now compute the corrections to the free energy:

𝐹QMC = 𝐹 − Δ𝜏2Tr𝑒−𝛽�̂��̂�3
Tr𝑒−𝛽�̂�

+ 𝑂(Δ𝜏4). (2.27)

B.3. Systematic errors 185

Hence the quantity plotted in Fig. B1 corresponds to

⟨�̂�3⟩/⟨�̂�⟩. (2.28)

It is intensive in 𝑁 and 𝑉 , such that it has a well defined value in the large-𝑁 limit.

B.4 Bounds on the bond observable

In this appendix, we discuss a lower and upper bound for a bond observable ∑𝑎
̂𝑆(𝑎)
𝑖 ̂𝑆(𝑎)

𝑗 , where 𝑖 and 𝑗 are two
distinct lattice sites, not necessarily nearest neighbor. The bond observable can be expressed as

∑
𝑎

̂𝑆(𝑎)
𝑖 ̂𝑆(𝑎)

𝑗 = 1
2 ∑

𝑎
(̂𝑆(𝑎)

𝑖 + ̂𝑆(𝑎)
𝑗) (̂𝑆(𝑎)

𝑖 + ̂𝑆(𝑎)
𝑗)

−1
2 ∑

𝑎
̂𝑆(𝑎)
𝑖 ̂𝑆(𝑎)

𝑖 − 1
2 ∑

𝑎
̂𝑆(𝑎)
𝑗 ̂𝑆(𝑎)

𝑗 .
(2.29)

With the choice of Eq. (3.9), the first term on the right-hand side of Eq. (2.29) is the quadratic Casimir element
̂𝐶2,Γ𝑖⊗Γ𝑗

of the tensor product of the two 𝔰𝔲(𝑁) representations Γ𝑖 and Γ𝑗, at lattice sites 𝑖 and 𝑗 [compare with
Eq. (3.10)]. The spectrum of ̂𝐶2,Γ𝑖⊗Γ𝑗

consists in the eigenvalues of the quadratic Casimir operator of all irreducible
representations to which Γ𝑖 ⊗Γ𝑗 reduces. An upper bound is readily found by the maximally symmetric composition
of Γ𝑖 and Γ𝑗, which corresponds to a Young tableau with 𝑁/2 rows and 4𝑆 columns; the proof is identical to that
of App. B.2. Being a square of a hermitian operator, ̂𝐶2,Γ𝑖⊗Γ𝑗

≥ 0. Such lower bound is saturated by the totally
antisymmetric composition of Γ𝑖 and Γ𝑗, which corresponds to the trivial 𝑆 = 0 representation. The second and third
term on the right-hand side of Eq. (2.29) are the quadratic Casimir operator of the 𝔰𝔲(𝑁) representation considered
here, and take the value given in Eq. (3.22). Inserting the bounds on ̂𝐶2,Γ𝑖⊗Γ𝑗

discussed above in Eq. (2.29), we
obtain

−𝐶(𝑁, 𝑆) ≤ ⟨∑
𝑎

̂𝑆(𝑎)
𝑖 ̂𝑆(𝑎)

𝑗 ⟩ ≤ 𝐶(𝑁, 2𝑆)/2 − 𝐶(𝑁, 𝑆) = 𝑁𝑆2

2 . (2.30)

186

ACKNOWLEDGMENTS

I am not big on giving speeches and the like, but still want to thank the people that helped and impacted me on the
way of finally finishing this document.
Beginning with my advisor, Fakher Assaad, who has already been an excellent mentor to me even before I started my
doctoral studies. He came up with very interesting projects for me, gave lots of liberty to explore my interests with
e.g. pyALF and is generally a really cool guy.
I’d also like to thank the other two members of my advisory committee, Thorsten Ohl and Igor Herbut, for their
easygoing cooperation and Mr. Schröder-Köhne from the GSST for his help and patience with the administrative
aspects of my doctoral studies.
Furthermore, I thank my scientific collaborators for the pleasant and productive interaction: Lukas Janssen, Kain
Sun, Zi Yang Meng, Igor Herbut, Matthias Vojta, Francesco Parisen Toldin and Fakher Assaad. I would like to thank
Subir Sachdev for illuminating discussions on the project discussed in Chapter 3.
I also would like to thank all members and former members of AG Assaad, that made for a very pleasant working
environment: Luis who thoroughly read most of this document and gave loads of constructive feedback. Jefferson,
who read an early draft, was also an immense help in this thesis. Marcin, who has been sitting next to me for the last
last few years, helped me a lot with literature. Flo, the go-to exert on numerical simulations and co-creator of the
awesome HackyHour.
And all the others: Johannes, Stefan, Francesco, Manuel, Disha, Gabriel, Anika, Adrien, Maksim, Bimla, Zihong,
Gaopei, Martin B., Martin H., Helke, Toshihiro, João, Sounak, Indra, Emilie, Zhenjiu, Fakher.
I am also grateful to the Fachschaft and the many awesome people there. There is almost always Club Mate in the
fridge and a nice spot on the Couch to relax.
The ct.qmat AO, in particular in Würzburg, tha has been a great addition to my group of colleagues in the last two
and a half years: Katha, Kathi, Maja-Lisa, Michi, Moni, Sabrina.
And many other great people at the physics faculty.
In acknowledgment of nice pastimes, I’ll just mention the following: “T-Town”, “Mr. Italy”, “Wer lange sitzt muss
rosten”, “Edel(nice)-Rocker”, “SBOA”, “Segeln ohne Segeln”.
My (former) flatmates made for a relaxed atmosphere to come home to: Jonas R., Sara, Fabio and René
My parents who probably did a pretty good job with raising me and my siblings were also a net positive.
For funding I would like to thank the Collaborative Research Center SFB 1170 ToCoTronics for contributing to bulk
of my PhD salary and the Research Unit FOR 1807 which also contributed significantly. I also have to thank Unitary
Fund2 that supported my development of pyALF. Finally, the cluster of excellence ct.qmat and KONWIR took over
my funding at the scheduled end of my doctoral training in 2022.
I am grateful to the Leibniz Supercomputing Centre3 and the Erlangen National High Performance Computing Center
(NHR@FAU4) for providing computing time on the Supercomputers SuperMUC-NG and Fritz, respectively, where
the bulk of my simulations have been carried out.

2 https://unitary.fund
3 https://www.lrz.de
4 https://hpc.fau.de/

187

https://unitary.fund
https://unitary.fund
https://www.lrz.de
https://hpc.fau.de/

188

BIBLIOGRAPHY

[1] Steve Jobs. Vintage Steve Jobs footage on Apple. Ca. 1980. Timestamp 5:27 to 7:00. URL: https://www.
youtube.com/watch?v=GfxxRKBgos8&t=5m27s.

[2] The Walter J. Brown Media Archives & Peabody Awards Collection at the University of Georgia. Memory
and Imagination: New Pathways to the Library of Congress. 1992. URL: https://americanarchive.org/catalog/
cpb-aacip-55-76f1wdcf.

[3] Alexander Weiße and Holger Fehske. Exact Diagonalization Techniques, pages 529–544. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-74686-7_18.

[4] Alexander Wietek and Andreas M. Läuchli. Sublattice coding algorithm and distributed memory paralleliza-
tion for large-scale exact diagonalizations of quantummany-body systems. Phys. Rev. E, 98:033309, Sep 2018.
doi:10.1103/PhysRevE.98.033309.

[5] S. Brooks, A. Gelman, G. Jones, and X.L. Meng. Handbook of Markov Chain Monte Carlo. Chapman &
Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, 2011. ISBN 9781420079425. URL: https:
//books.google.de/books?id=qfRsAIKZ4rIC.

[6] N. Metropolis. The Beginning of the Monte Carlo Method. Los Alamos Science, 15:125–130, 1987. URL:
https://library.lanl.gov/cgi-bin/getfile?15-12.pdf.

[7] Gordon E. Moore. Cramming more components onto integrated circuits, Reprinted from Electronics, volume
38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–35, 2006.
doi:10.1109/N-SSC.2006.4785860.

[8] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar. Monte Carlo calculations of coupled boson-fermion sys-
tems. Phys. Rev. D, 24:2278–2286, Oct 1981. doi:10.1103/PhysRevD.24.2278.

[9] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. Scalettar. Numerical study
of the two-dimensional Hubbard model. Phys. Rev. B, 40:506–516, Jul 1989. doi:10.1103/PhysRevB.40.506.

[10] F.F. Assaad and H.G. Evertz. World-line and Determinantal Quantum Monte Carlo Methods for Spins,
Phonons and Electrons. In H. Fehske, R. Schneider, and A. Weiße, editors, Computational Many-
Particle Physics, volume 739 of Lect. Notes Phys., pages 277–356. Springer, Berlin Heidelberg, 2008.
doi:10.1007/978-3-540-74686-7_10.

[11] Martin Bercx, Florian Goth, Johannes S. Hofmann, and Fakher F. Assaad. The ALF (Algorithms for Lattice
Fermions) project release 1.0. Documentation for the auxiliary field quantumMonte Carlo code. SciPost Phys.,
3:013, 2017. doi:10.21468/SciPostPhys.3.2.013.

[12] F. F. Assaad, M. Bercx, F. Goth, A. Götz, J. S. Hofmann, E. Huffman, Z. Liu, F. Parisen Toldin,
J. S. E. Portela, and J. Schwab. The ALF (Algorithms for Lattice Fermions) project release 2.0. Docu-
mentation for the auxiliary-field quantum Monte Carlo code. SciPost Phys. Codebases, pages 1, Aug 2022.
doi:10.21468/SciPostPhysCodeb.1.

[13] Jonas Schwab. Selection of my contributions to ALF. 2019-2022. https://git.physik.uni-wuerzburg.de/
ALF/ALF/-/merge_requests/66, https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/75,
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/92, https://git.physik.uni-wuerzburg.de/
ALF/ALF/-/merge_requests/105, https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/107,
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/113, https://git.physik.uni-wuerzburg.de/

189

https://www.youtube.com/watch?v=GfxxRKBgos8&t=5m27s
https://www.youtube.com/watch?v=GfxxRKBgos8&t=5m27s
https://americanarchive.org/catalog/cpb-aacip-55-76f1wdcf
https://americanarchive.org/catalog/cpb-aacip-55-76f1wdcf
https://doi.org/10.1007/978-3-540-74686-7_18
https://doi.org/10.1103/PhysRevE.98.033309
https://books.google.de/books?id=qfRsAIKZ4rIC
https://books.google.de/books?id=qfRsAIKZ4rIC
https://library.lanl.gov/cgi-bin/getfile?15-12.pdf
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1007/978-3-540-74686-7_10
https://doi.org/10.21468/SciPostPhys.3.2.013
https://doi.org/10.21468/SciPostPhysCodeb.1
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/66
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/66
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/75
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/92
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/105
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/105
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/107
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/113
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/117
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/117

Dissertation Jonas Schwab

ALF/ALF/-/merge_requests/117, https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/120,
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/141.

[14] Jonas Schwab, Lukas Janssen, Kai Sun, Zi Yang Meng, Igor F. Herbut, Matthias Vojta, and Fakher F. Assaad.
Nematic Quantum Criticality in Dirac Systems. Phys. Rev. Lett., 128:157203, Apr 2022. arXiv:2110.02668,
doi:10.1103/PhysRevLett.128.157203.

[15] R Daou, J Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Laliberté, Nicolas Doiron-Leyraud,
BJ Ramshaw, Ruixing Liang, DA Bonn, WN Hardy, and others. Broken rotational symmetry in the pseu-
dogap phase of a high-Tc superconductor. Nature, 463(7280):519–522, 2010. doi:10.1038/nature08716.

[16] RM Fernandes, AV Chubukov, and J Schmalian. What drives nematic order in iron-based superconductors?
Nature physics, 10(2):97–104, 2014. doi:10.1038/nphys2877.

[17] Jonas Schwab, Francesco Parisen Toldin, and Fakher F. Assaad. Phase diagram of the SU(𝑁) anti-
ferromagnet of spin 𝑆 on a square lattice. Phys. Rev. B, 108:115151, Sep 2023. arXiv:2304.07329,
doi:10.1103/PhysRevB.108.115151.

[18] N. Read and Subir Sachdev. Some features of the phase diagram of the square lattice SU(𝑁) antiferromagnet.
Nucl. Phys. B, 316(3):609–640, April 1989. doi:10.1016/0550-3213(89)90061-8.

[19] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki. Valence bond ground states in isotropic quantum
antiferromagnets. Commun. Math. Phys., 115(3):477–528, September 1988. doi:10.1007/BF01218021.

[20] N. Read and Subir Sachdev. Valence-bond and spin-Peierls ground states of low-dimensional quantum anti-
ferromagnets. Phys. Rev. Lett., 62(14):1694–1697, April 1989. doi:10.1103/PhysRevLett.62.1694.

[21] N. Read and Subir Sachdev. Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quan-
tum antiferromagnets. Phys. Rev. B, 42(7):4568–4589, September 1990. doi:10.1103/PhysRevB.42.4568.

[22] Executable Books Community. Jupyter book. February 2024. doi:10.5281/zenodo.2561065.
[23] S. S. Wilson. Bicycle Technology. Scientific American, pages 81–91, Mar 1973. URL: https://www.

scientificamerican.com/article/bicycle-technology/.
[24] Jonas Schwab. Online version of this thesis. 2024. URL: https://purl.org/diss-jschwab.
[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cour-

napeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362,
September 2020. doi:10.1038/s41586-020-2649-2.

[26] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a LLVM-based Python JIT compiler. In Pro-
ceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM '15. New York, NY,
USA, 2015. Association for Computing Machinery. doi:10.1145/2833157.2833162.

[27] The Matplotlib Development Team. Matplotlib: Visualization with Python. August 2024.
doi:10.5281/zenodo.592536.

[28] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

[29] Hao Shi and Shiwei Zhang. Infinite variance in fermion quantum Monte Carlo calculations. Phys. Rev. E,
93:033303, Mar 2016. doi:10.1103/PhysRevE.93.033303.

[30] Maksim Ulybyshev and Fakher Assaad. Mitigating spikes in fermion Monte Carlo methods by reshuffling
measurements. Phys. Rev. E, 106:025318, Aug 2022. doi:10.1103/PhysRevE.106.025318.

190 Bibliography

https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/117
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/117
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/120
https://git.physik.uni-wuerzburg.de/ALF/ALF/-/merge_requests/141
https://arxiv.org/abs/2110.02668
https://doi.org/10.1103/PhysRevLett.128.157203
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nphys2877
https://arxiv.org/abs/2304.07329
https://doi.org/10.1103/PhysRevB.108.115151
https://doi.org/10.1016/0550-3213(89)90061-8
https://doi.org/10.1007/BF01218021
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevB.42.4568
https://doi.org/10.5281/zenodo.2561065
https://www.scientificamerican.com/article/bicycle-technology/
https://www.scientificamerican.com/article/bicycle-technology/
https://purl.org/diss-jschwab
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.5281/zenodo.592536
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevE.93.033303
https://doi.org/10.1103/PhysRevE.106.025318

Dissertation Jonas Schwab

[31] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller.
Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6):1087–1092,
1953. doi:10.1063/1.1699114.

[32] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
57(1):97–109, 04 1970. doi:10.1093/biomet/57.1.97.

[33] Lars Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev.,
65:117–149, Feb 1944. doi:10.1103/PhysRev.65.117.

[34] K. Binder. Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B Con. Mat.,
43(2):119–140, 1981. doi:10.1007/BF01293604.

[35] U. Wolff. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett., 62:361–364, January 1989.
doi:10.1103/PhysRevLett.62.361.

[36] Hale F Trotter. On the product of semi-groups of operators. Proceedings of the AmericanMathematical Society,
10(4):545–551, 1959. doi:10.1090/S0002-9939-1959-0108732-6.

[37] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011. ISBN
9780511973765. doi:10.1017/CBO9780511973765.

[38] Subir Sachdev. Colloquium: Order and quantum phase transitions in the cuprate superconductors. Rev. Mod.
Phys., 75:913–932, Jul 2003. doi:10.1103/RevModPhys.75.913.

[39] Hilbert v. Löhneysen, Achim Rosch, Matthias Vojta, and Peter Wölfle. Fermi-liquid instabilities at
magnetic quantum phase transitions. Rev. Mod. Phys., 79(3):1015, July 2007. arXiv:cond-mat/0606317,
doi:10.1103/RevModPhys.79.1015.

[40] Shinsei Ryu, Christopher Mudry, Chang-Yu Hou, and Claudio Chamon. Masses in graphenelike two-
dimensional electronic systems: Topological defects in order parameters and their fractional exchange statis-
tics. Phys. Rev. B, 80(20):205319, Nov 2009. doi:10.1103/PhysRevB.80.205319.

[41] David J. Gross and André Neveu. Dynamical symmetry breaking in asymptotically free field theories. Phys.
Rev. D, 10:3235–3253, Nov 1974. doi:10.1103/PhysRevD.10.3235.

[42] Igor F. Herbut. Interactions and Phase Transitions on Graphene's Honeycomb Lattice. Phys. Rev. Lett.,
97(14):146401, October 2006. arXiv:cond-mat/0606195, doi:10.1103/PhysRevLett.97.146401.

[43] Igor F. Herbut, Vladimir Juričić, and Oskar Vafek. Relativistic Mott criticality in graphene. Phys. Rev. B,
80(7):075432, Aug 2009. arXiv:0904.1019, doi:10.1103/PhysRevB.80.075432.

[44] Lukas Janssen and Igor F. Herbut. Antiferromagnetic critical point on graphene's honeycomb lattice: A
functional renormalization group approach. Phys. Rev. B, 89(20):205403, May 2014. arXiv:1402.6277,
doi:10.1103/PhysRevB.89.205403.

[45] Nikolai Zerf, Luminita N.Mihaila, PeterMarquard, Igor F. Herbut, andMichaelM. Scherer. Four-loop critical
exponents for the Gross-Neveu-Yukawa models. Phys. Rev. D, 96(9):096010, Nov 2017. arXiv:1709.05057,
doi:10.1103/PhysRevD.96.096010.

[46] Lukas Janssen, Igor F. Herbut, and Michael M. Scherer. Compatible orders and fermion-induced emergent
symmetry in Dirac systems. Phys. Rev. B, 97:041117, Jan 2018. doi:10.1103/PhysRevB.97.041117(R).

[47] Shouryya Ray, Bernhard Ihrig, Daniel Kruti, John A. Gracey, Michael M. Scherer, and Lukas Janssen. Frac-
tionalized quantum criticality in spin-orbital liquids from field theory beyond the leading order. Phys. Rev. B,
103(15):155160, Apr 2021. arXiv:2101.10335, doi:10.1103/PhysRevB.103.155160.

[48] Vadim Oganesyan, Steven A. Kivelson, and Eduardo Fradkin. Quantum theory of a nematic Fermi fluid. Phys.
Rev. B, 64:195109, Oct 2001. doi:10.1103/PhysRevB.64.195109.

[49] Yoni Schattner, Samuel Lederer, Steven A. Kivelson, and Erez Berg. Ising Nematic Quantum Critical Point
in a Metal: A Monte Carlo Study. Phys. Rev. X, 6:031028, Aug 2016. doi:10.1103/PhysRevX.6.031028.

[50] Matthias Vojta, Ying Zhang, and Subir Sachdev. Quantum Phase Transitions in 𝑑-Wave Superconductors.
Phys. Rev. Lett., 85:4940–4943, Dec 2000. arXiv:cond-mat/0007170, doi:10.1103/PhysRevLett.85.4940.

Bibliography 191

https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1017/CBO9780511973765
https://doi.org/10.1103/RevModPhys.75.913
https://arxiv.org/abs/cond-mat/0606317
https://doi.org/10.1103/RevModPhys.79.1015
https://doi.org/10.1103/PhysRevB.80.205319
https://doi.org/10.1103/PhysRevD.10.3235
https://arxiv.org/abs/cond-mat/0606195
https://doi.org/10.1103/PhysRevLett.97.146401
https://arxiv.org/abs/0904.1019
https://doi.org/10.1103/PhysRevB.80.075432
https://arxiv.org/abs/1402.6277
https://doi.org/10.1103/PhysRevB.89.205403
https://arxiv.org/abs/1709.05057
https://doi.org/10.1103/PhysRevD.96.096010
https://doi.org/10.1103/PhysRevB.97.041117(R)
https://arxiv.org/abs/2101.10335
https://doi.org/10.1103/PhysRevB.103.155160
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/PhysRevX.6.031028
https://arxiv.org/abs/cond-mat/0007170
https://doi.org/10.1103/PhysRevLett.85.4940

Dissertation Jonas Schwab

[51] Matthias Vojta, Ying Zhang, and Subir Sachdev. Renormalization group analysis of quantum
critical points in 𝑑-wave superconductors. Int. J. Mod. Phys. B, 14(29n31):3719–3734, 2000.
doi:10.1142/S0217979200004271.

[52] Yejin Huh and Subir Sachdev. Renormalization group theory of nematic ordering in 𝑑-wave superconductors.
Phys. Rev. B, 78:064512, Aug 2008. doi:10.1103/PhysRevB.78.064512.

[53] Eun-Ah Kim, Michael J. Lawler, Paul Oreto, Subir Sachdev, Eduardo Fradkin, and Steven A. Kivelson. The-
ory of the nodal nematic quantum phase transition in superconductors. Phys. Rev. B, 77:184514, May 2008.
doi:10.1103/PhysRevB.77.184514.

[54] Jing Wang. Velocity renormalization of nodal quasiparticles in 𝑑-wave superconductors. Phys. Rev. B,
87:054511, Feb 2013. doi:10.1103/PhysRevB.87.054511.

[55] Shouryya Ray and Lukas Janssen. Gross-Neveu-Heisenberg criticality from competing nematic and antiferro-
magnetic orders in bilayer graphene. Phys. Rev. B, 104:045101, Jul 2021. doi:10.1103/PhysRevB.104.045101.

[56] Xiao Yan Xu, Kai Sun, Yoni Schattner, Erez Berg, and Zi Yang Meng. Non-Fermi Liquid at 2+1 D Ferro-
magnetic Quantum Critical Point. Phys. Rev. X, 7:031058, Sep 2017. doi:10.1103/PhysRevX.7.031058.

[57] Yuan-Yao He, Xiao Yan Xu, Kai Sun, Fakher F. Assaad, Zi Yang Meng, and Zhong-Yi Lu. Dy-
namical generation of topological masses in Dirac fermions. Phys. Rev. B, 97:081110(R), Feb 2018.
doi:10.1103/PhysRevB.97.081110.

[58] Douglas J. Scalapino, Steven R. White, and Shoucheng Zhang. Insulator, metal, or superconductor: The cri-
teria. Phys. Rev. B, 47:7995–8007, Apr 1993. doi:10.1103/PhysRevB.47.7995.

[59] F. F. Assaad, W. Hanke, and D. J. Scalapino. Temperature derivative of the superfluid density and flux quan-
tization as criteria for superconductivity in two-dimensional Hubbard models. Phys. Rev. B, 50:12835–12850,
Nov 1994. doi:10.1103/PhysRevB.50.12835.

[60] Tobias Meng, Achim Rosch, and Markus Garst. Quantum criticality with multiple dynamics. Phys. Rev. B,
86:125107, Sep 2012. doi:10.1103/PhysRevB.86.125107.

[61] Lukas Janssen and Igor F. Herbut. Nematic quantum criticality in three-dimensional Fermi system with
quadratic band touching. Phys. Rev. B, 92:045117, Jul 2015. doi:10.1103/PhysRevB.92.045117.

[62] Igor Herbut. A Modern Approach to Critical Phenomena. Cambridge University Press, 2007.
doi:10.1017/CBO9780511755521.

[63] Yuzhi Liu, Wei Wang, Kai Sun, and Zi Yang Meng. Designer Monte Carlo simulation for the Gross-Neveu-
Yukawa transition. Phys. Rev. B, 101:064308, Feb 2020. doi:10.1103/PhysRevB.101.064308.

[64] Bitan Roy, Vladimir Juričić, and Igor F. Herbut. Emergent Lorentz symmetry near fermionic quantum critical
points in two and three dimensions. J. High Energ. Phys., 2016(04):18, 2016. doi:10.1007/JHEP04(2016)018.

[65] Adam Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza. Deconfined Quantum
Criticality, Scaling Violations, and Classical Loop Models. Phys. Rev. X, 5:041048, Dec 2015.
doi:10.1103/PhysRevX.5.041048.

[66] Adam Nahum. Note on Wess-Zumino-Witten models and quasiuniversality in 2+1 dimensions. Phys. Rev. B,
102:201116, Nov 2020. doi:10.1103/PhysRevB.102.201116.

[67] Zi-Xiang Li, Yi-Fan Jiang, and Hong Yao. Majorana-Time-Reversal Symmetries: A Fundamental Princi-
ple for Sign-Problem-Free Quantum Monte Carlo Simulations. Phys. Rev. Lett., 117:267002, Dec 2016.
doi:10.1103/PhysRevLett.117.267002.

[68] Zi-Xiang Li, Yi-Fan Jiang, and Hong Yao. Fermion-sign-free Majarana-quantum-Monte-Carlo studies of
quantum critical phenomena of Dirac fermions in two dimensions. New Journal of Physics, 17(8):085003,
2015. doi:10.1088/1367-2630/17/8/085003.

[69] Emilie Fulton Huffman and Shailesh Chandrasekharan. Solution to sign problems in half-filled spin-polarized
electronic systems. Phys. Rev. B, 89:111101(R), Mar 2014. doi:10.1103/PhysRevB.89.111101.

[70] Congjun Wu and Shou-Cheng Zhang. Sufficient condition for absence of the sign problem in the fermionic
quantum Monte Carlo algorithm. Phys. Rev. B, 71:155115, Apr 2005. doi:10.1103/PhysRevB.71.155115.

[71] N Goldenfeld. Lectures on Phase Transitions and the Renormalization Group (1st ed.). CRC Press, (1992).

192 Bibliography

https://doi.org/10.1142/S0217979200004271
https://doi.org/10.1103/PhysRevB.78.064512
https://doi.org/10.1103/PhysRevB.77.184514
https://doi.org/10.1103/PhysRevB.87.054511
https://doi.org/10.1103/PhysRevB.104.045101
https://doi.org/10.1103/PhysRevX.7.031058
https://doi.org/10.1103/PhysRevB.97.081110
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevB.50.12835
https://doi.org/10.1103/PhysRevB.86.125107
https://doi.org/10.1103/PhysRevB.92.045117
https://doi.org/10.1017/CBO9780511755521
https://doi.org/10.1103/PhysRevB.101.064308
https://doi.org/10.1007/JHEP04(2016)018
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevB.102.201116
https://doi.org/10.1103/PhysRevLett.117.267002
https://doi.org/10.1088/1367-2630/17/8/085003
https://doi.org/10.1103/PhysRevB.89.111101
https://doi.org/10.1103/PhysRevB.71.155115

Dissertation Jonas Schwab

[72] Zi Hong Liu, Xiao Yan Xu, Yang Qi, Kai Sun, and Zi Yang Meng. Elective-momentum ultrasize quantum
Monte Carlo method. Phys. Rev. B, 99:085114, Feb 2019. doi:10.1103/PhysRevB.99.085114.

[73] H T Diep. Frustrated Spin Systems. World Scientific, 3rd edition, 2020. doi:10.1142/11660.
[74] C. Castelnovo, R. Moessner, and S.L. Sondhi. Spin Ice, Fractionalization, and Topological Order. Annual

Review of Condensed Matter Physics, 3(1):35–55, 2012. doi:10.1146/annurev-conmatphys-020911-125058.
[75] Leon Balents. Spin liquids in frustrated magnets. Nature, 464:199–208, 2010. doi:10.1038/nature08917.
[76] T. Senthil, Ashvin Vishwanath, Leon Balents, Subir Sachdev, andMatthew P. A. Fisher. Deconfined Quantum

Critical Points. Science, 303(5663):1490–1494, 2004. doi:10.1126/science.1091806.
[77] H. Nishimori. Statistical Physics of Spin Glasses and Information Processing: An

Introduction. International series of monographs on physics. Oxford University
Press, 2001. ISBN 9780198509400. URL: https://global.oup.com/academic/product/
statistical-physics-of-spin-glasses-and-information-processing-9780198509400.

[78] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, 2010. ISBN 9781107002173. doi:10.1017/CBO9780511976667.

[79] Anders W. Sandvik. Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg
model. Phys. Rev. B, 56:11678–11690, Nov 1997. doi:10.1103/PhysRevB.56.11678.

[80] Matteo Calandra Buonaura and Sandro Sorella. Numerical study of the two-dimensional Heisenberg model
using a Green functionMonte Carlo technique with a fixed number of walkers. Phys. Rev. B, 57:11446–11456,
May 1998. doi:10.1103/PhysRevB.57.11446.

[81] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S.-W. Cheong, and
Z. Fisk. Spin Waves and Electronic Interactions in La₂CuO₄. Phys. Rev. Lett., 86:5377–5380, Jun 2001.
doi:10.1103/PhysRevLett.86.5377.

[82] I. A. Zaliznyak, L.-P. Regnault, and D. Petitgrand. Neutron-scattering study of the dynamic spin correlations in
CsNiCl3 above Néel ordering. Phys. Rev. B, 50:15824–15833, Dec 1994. doi:10.1103/PhysRevB.50.15824.

[83] Kliment I Kugel' and D I Khomskiĭ. The Jahn-Teller effect and magnetism: transition metal compounds. Soviet
Physics Uspekhi, 25(4):231, 1982. doi:10.1070/PU1982v025n04ABEH004537.

[84] K. I. Kugel, D. I. Khomskii, A. O. Sboychakov, and S. V. Streltsov. Spin-orbital interaction for face-
sharing octahedra: Realization of a highly symmetric SU(4) model. Phys. Rev. B, 91:155125, Apr 2015.
doi:10.1103/PhysRevB.91.155125.

[85] S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagi-
wara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera,
M. A. Green, and C. Broholm. Spin-Orbital Short-Range Order on a Honeycomb-Based Lattice. Science,
336(6081):559–563, 2012. doi:10.1126/science.1212154.

[86] Philippe Corboz, Miklós Lajkó, Andreas M. Läuchli, Karlo Penc, and Frédéric Mila. Spin-Orbital Quantum
Liquid on the Honeycomb Lattice. Phys. Rev. X, 2:041013, Nov 2012. doi:10.1103/PhysRevX.2.041013.

[87] C. Wu, J. P. Hu, and S. C. Zhang. Exact SO(5) Symmetry in the Spin-3/2 Fermionic System. Phys. Rev. Lett.,
91:186402, 2003. doi:10.1103/PhysRevLett.91.186402.

[88] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and
A. M. Rey. Two-orbital SU(𝑁) magnetism with ultracold alkaline-earth atoms. Nat. Phys., 6:289–295, 2010.
doi:10.1038/nphys1535.

[89] F. D.M. Haldane. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quan-
tized Solitons of the One-Dimensional Easy-Axis Néel State. Phys. Rev. Lett., 50:1153–1156, April 1983.
doi:10.1103/PhysRevLett.50.1153.

[90] F. D. M. Haldane. O(3) nonlinear σ model and the topological distinction between integer- and
half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett., 61(8):1029–1032, August 1988.
doi:10.1103/PhysRevLett.61.1029.

[91] Anders W. Sandvik. Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model
with Four-Spin Interactions. Phys. Rev. Lett., 98:227202, Jun 2007. doi:10.1103/PhysRevLett.98.227202.

Bibliography 193

https://doi.org/10.1103/PhysRevB.99.085114
https://doi.org/10.1142/11660
https://doi.org/10.1146/annurev-conmatphys-020911-125058
https://doi.org/10.1038/nature08917
https://doi.org/10.1126/science.1091806
https://global.oup.com/academic/product/statistical-physics-of-spin-glasses-and-information-processing-9780198509400
https://global.oup.com/academic/product/statistical-physics-of-spin-glasses-and-information-processing-9780198509400
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevB.56.11678
https://doi.org/10.1103/PhysRevB.57.11446
https://doi.org/10.1103/PhysRevLett.86.5377
https://doi.org/10.1103/PhysRevB.50.15824
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1103/PhysRevB.91.155125
https://doi.org/10.1126/science.1212154
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevLett.91.186402
https://doi.org/10.1038/nphys1535
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.61.1029
https://doi.org/10.1103/PhysRevLett.98.227202

Dissertation Jonas Schwab

[92] S Sorella, S Baroni, R Car, and M Parrinello. A Novel Technique for the Simulation of Interacting Fermion
Systems. Europhysics Letters (EPL), 8(7):663–668, apr 1989. doi:10.1209/0295-5075/8/7/014.

[93] F. F. Assaad. Phase diagram of the half-filled two-dimensional SU(𝑁) Hubbard-Heisenberg model: A
quantum Monte Carlo study. Phys. Rev. B, 71(7):075103, February 2005. arXiv:cond-mat/0406074,
doi:10.1103/PhysRevB.71.075103.

[94] John Demetrius Vergados. Group and Representation Theory. World Scientific, February 2017. ISBN
9789813202443. doi:10.1142/10325.

[95] G Sugiyama and S.E Koonin. Auxiliary field Monte-Carlo for quantum many-body ground states. Annals of
Physics, 168(1):1–26, 1986. doi:10.1016/0003-4916(86)90107-7.

[96] Z. Wang, F. F. Assaad, and F. Parisen Toldin. Finite-size effects in canonical and grand-canonical quan-
tum Monte Carlo simulations for fermions. Phys. Rev. E, 96(4):042131, October 2017. arXiv:1706.01874,
doi:10.1103/PhysRevE.96.042131.

[97] Tong Shen, Yuan Liu, Yang Yu, and Brenda M. Rubenstein. Finite temperature auxiliary field quantum
Monte Carlo in the canonical ensemble. J. Chem. Phys., 153(20):204108, November 2020. arXiv:2010.09813,
doi:10.1063/5.0026606.

[98] Howard E. Haber. Useful relations among the generators in the defining and adjoint representations of SU(𝑁).
SciPost Phys. Lect. Notes, January 2021. arXiv:1912.13302, doi:10.21468/SciPostPhysLectNotes.21.

[99] K. Pilch and A. N. Schellekens. Formulas for the eigenvalues of the Laplacian on tensor harmonics on sym-
metric coset spaces. J. Math. Phys., 25(12):3455–3459, December 1984. doi:10.1063/1.526101.

[100] Nisheeta Desai and Ribhu K. Kaul. Spin-𝑆 Designer Hamiltonians and the Square Lattice
𝑆=1 Haldane Nematic. Phys. Rev. Lett., 123(10):107202, September 2019. arXiv:1904.09629,
doi:10.1103/PhysRevLett.123.107202.

[101] S. Caracciolo and A. Pelissetto. Corrections to finite-size scaling in the lattice N-vector model for 𝑁=∞. Phys.
Rev. D, 58(10):105007, November 1998. arXiv:hep-lat/9804001, doi:10.1103/PhysRevD.58.105007.

[102] F. Parisen Toldin, M. Hohenadler, F. F. Assaad, and I. F. Herbut. Fermionic quantum criticality in honeycomb
and π-flux Hubbard models: Finite-size scaling of renormalization-group-invariant observables from quantum
Monte Carlo. Phys. Rev. B, 91(16):165108, April 2015. arXiv:1411.2502, doi:10.1103/PhysRevB.91.165108.

[103] F. F. Assaad and I. F. Herbut. Pinning the Order: The Nature of Quantum Criticality in the
Hubbard Model on Honeycomb Lattice. Phys. Rev. X, 3(3):031010, July 2013. arXiv:1304.6340,
doi:10.1103/PhysRevX.3.031010.

[104] F. Parisen Toldin, F. F. Assaad, and S.Wessel. Critical behavior in the presence of an order-parameter pinning
field. Phys. Rev. B, 95(1):014401, January 2017. arXiv:1607.04270, doi:10.1103/PhysRevB.95.014401.

[105] Arun Paramekanti and J B Marston. SU(𝑁) quantum spin models: a variational wavefunction study. Journal
of Physics: Condensed Matter, 19(12):125215, 2007. doi:10.1088/0953-8984/19/12/125215.

[106] Francisco H. Kim, Fakher F. Assaad, Karlo Penc, and Frédéric Mila. Dimensional crossover in
the SU(4) Heisenberg model in the six-dimensional antisymmetric self-conjugate representation re-
vealed by quantum Monte Carlo and linear flavor-wave theory. Phys. Rev. B, 100:085103, Aug 2019.
doi:10.1103/PhysRevB.100.085103.

[107] Da Wang, Yi Li, Zi Cai, Zhichao Zhou, Yu Wang, and Congjun Wu. Competing Orders in the 2D Half-
Filled SU(2𝑁) Hubbard Model through the Pinning-Field QuantumMonte Carlo Simulations. Phys. Rev. Lett.,
112:156403, Apr 2014. doi:10.1103/PhysRevLett.112.156403.

[108] A. V. Onufriev and J. B. Marston. Enlarged symmetry and coherence in arrays of quantum dots. Phys. Rev. B,
59:12573–12578, May 1999. doi:10.1103/PhysRevB.59.12573.

[109] R. Assaraf, P. Azaria, E. Boulat, M. Caffarel, and P. Lecheminant. Dynamical Symmetry Enlargement versus
Spin-Charge Decoupling in the One-Dimensional SU(4) Hubbard Model. Phys. Rev. Lett., 93:016407, Jul
2004. doi:10.1103/PhysRevLett.93.016407.

[110] Nicholas Pomata and Tzu-Chieh Wei. Demonstrating the Affleck-Kennedy-Lieb-Tasaki Spectral Gap on 2D
Degree-3 Lattices. Phys. Rev. Lett., 124:177203, Apr 2020. doi:10.1103/PhysRevLett.124.177203.

194 Bibliography

https://doi.org/10.1209/0295-5075/8/7/014
https://arxiv.org/abs/cond-mat/0406074
https://doi.org/10.1103/PhysRevB.71.075103
https://doi.org/10.1142/10325
https://doi.org/10.1016/0003-4916(86)90107-7
https://arxiv.org/abs/1706.01874
https://doi.org/10.1103/PhysRevE.96.042131
https://arxiv.org/abs/2010.09813
https://doi.org/10.1063/5.0026606
https://arxiv.org/abs/1912.13302
https://doi.org/10.21468/SciPostPhysLectNotes.21
https://doi.org/10.1063/1.526101
https://arxiv.org/abs/1904.09629
https://doi.org/10.1103/PhysRevLett.123.107202
https://arxiv.org/abs/hep-lat/9804001
https://doi.org/10.1103/PhysRevD.58.105007
https://arxiv.org/abs/1411.2502
https://doi.org/10.1103/PhysRevB.91.165108
https://arxiv.org/abs/1304.6340
https://doi.org/10.1103/PhysRevX.3.031010
https://arxiv.org/abs/1607.04270
https://doi.org/10.1103/PhysRevB.95.014401
https://doi.org/10.1088/0953-8984/19/12/125215
https://doi.org/10.1103/PhysRevB.100.085103
https://doi.org/10.1103/PhysRevLett.112.156403
https://doi.org/10.1103/PhysRevB.59.12573
https://doi.org/10.1103/PhysRevLett.93.016407
https://doi.org/10.1103/PhysRevLett.124.177203

[111] Didier Poilblanc, Norbert Schuch, and J. Ignacio Cirac. Field-induced superfluids and Bose liquids in projected
entangled pair states. Phys. Rev. B, 88:144414, Oct 2013. doi:10.1103/PhysRevB.88.144414.

[112] Ribhu K. Kaul and Anders W. Sandvik. Lattice Model for the SU(𝑁) Néel to Valence-Bond Solid Quantum
Phase Transition at Large 𝑁. Phys. Rev. Lett., 108:137201, Mar 2012. doi:10.1103/PhysRevLett.108.137201.

[113] Michelle Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus Westerlund, and Stuart Cheshire. Internet As-
signed Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry. RFC 6335, August 2011. URL: https://www.rfc-editor.org/info/rfc6335,
doi:10.17487/RFC6335.

[114] C. J. Geyer. Markov ChainMonte Carlo maximum likelihood. In Computing Science and Statistics: Proceedings
of the 23rd Symposium on the Interface, 156–163. New York, 1991. American Statistical Association. URL:
https://hdl.handle.net/11299/58440.

[115] Koji Hukushima and Koji Nemoto. ExchangeMonte CarloMethod and Application to Spin Glass Simulations.
Journal of the Physical Society of Japan, 65(6):1604–1608, 1996. doi:10.1143/JPSJ.65.1604.

[116] B. Efron and C. Stein. The Jackknife Estimate of Variance. The Annals of Statistics, 9(3):586 – 596, 1981.
doi:10.1214/aos/1176345462.

[117] Igor F. Herbut and Lukas Janssen. Topological Mott Insulator in Three-Dimensional Systems
with Quadratic Band Touching. Phys. Rev. Lett., 113(10):106401, Sep 2014. arXiv:1404.5721,
doi:10.1103/PhysRevLett.113.106401.

[118] B. Efron and R.J. Tibshirani.An Introduction to the Bootstrap. Chapman&Hall/CRCMonographs on Statistics
&Applied Probability. Taylor & Francis, 1994. ISBN 9780412042317. URL: https://books.google.de/books?
id=gLlpIUxRntoC.

[119] I. Affleck and J. B. Marston. Large-𝑁 limit of the Heisenberg-Hubbard model: Implications for high-Tc su-
perconductors. Phys. Rev. B, 37:3774–3777, March 1988. doi:10.1103/PhysRevB.37.3774.

[120] Zhenjiu Wang, Michael P. Zaletel, Roger S. K. Mong, and Fakher F. Assaad. Phases of the (2+1) Di-
mensional SO(5) Nonlinear Sigma Model with Topological Term. Phys. Rev. Lett., 126:045701, Jan 2021.
doi:10.1103/PhysRevLett.126.045701.

195

https://doi.org/10.1103/PhysRevB.88.144414
https://doi.org/10.1103/PhysRevLett.108.137201
https://www.rfc-editor.org/info/rfc6335
https://doi.org/10.17487/RFC6335
https://hdl.handle.net/11299/58440
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1214/aos/1176345462
https://arxiv.org/abs/1404.5721
https://doi.org/10.1103/PhysRevLett.113.106401
https://books.google.de/books?id=gLlpIUxRntoC
https://books.google.de/books?id=gLlpIUxRntoC
https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/PhysRevLett.126.045701

196

Affidavit

I hereby confirm that my thesis entitled Phases and phase transitions in SU(𝑁) spin and Dirac systems:
Auxiliary field quantum Monte Carlo studies is the result of my own work. I did not receive any help or support from
commercial consultants. All sources and / or materials applied are listed and specified in the thesis.

Furthermore, I confirm that this thesis has not yet been submitted as part of another examination process neither in
identical nor in similar form.

Würzburg, December 19, 2024

Place, Date Signature

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, die Dissertation Phasen und Phasenübergänge in SU(𝑁)-Spin- und Dirac-Systemen:
Hilfsfeld Quanten Monte Carlo Studien eigenständig, d.h. insbesondere selbständig und ohne Hilfe eines kommer-
ziellen Promotionsberaters, angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel
verwendet zu haben.

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem anderen
Prüfungsverfahren vorgelegen hat.

Würzburg, 19. Dezember 2024

Ort, Datum Unterschrift

197

	Abstract
	Zusammenfassung
	Contents
	Introduction
	A brief (Auxiliary Field Quantum) Monte Carlo primer
	Stochastic integration
	Example: Stochastically calculating a 1d integral
	Example: Fat tails

	Markov chain Monte Carlo
	Caveats: Autocorrelation and Warmup
	Metropolis-Hastings algorithm
	Example: One-dimensional Ising chain
	Example in two dimensions: Critical slowing down
	Solving critical slowing down with the Wolff algorithm

	Making a classical computer understand quantum models
	Negative sign problem
	Auxiliary field QMC

	Projects
	Nematic quantum criticality in Dirac systems
	Introduction
	Models
	Fourier transformed models
	Symmetries
	The C2v model
	The C4v model

	Lattice mean-field theory
	Continuum field theory
	The C2v model
	The C4v model
	Finalized field theory

	ε expansion
	QMC setup
	Absence of negative sign problem
	The C2v model
	The C4v model

	QMC Observables
	Bosonic degrees of freedom
	Order parameters
	RG-invariant quantities
	Derivative of the free energy

	Fermionic degrees of freedom
	Fermionic single-particle gap
	Fermi velocity anisotropy v⟂/ v∥

	QMC results
	Overview
	Critical exponents
	Correlation length exponent ν from RG invariant quantities.
	Scaling dimensions and scaling anisotropy
	Dynamical exponent z

	Odd-even effects

	Summary

	Phase diagram of the SU(N) antiferromagnet of spin S on a square lattice
	Introduction
	General formulation of the Hamiltonian
	QMC formulation
	Fermionic representation
	Test of projections

	Results
	Order parameters and phases
	S=1/2
	S=1
	S=3/2
	S=2

	Summary

	pyALF Documentation
	Prerequisites and installation
	ALF prerequisites
	pyALF installation
	Development installation

	Setting ALF directory through environment variable
	Check setup
	Using Jupyter Notebooks
	Ready-to-use container image
	Some SSH port forwarding applications
	Use remote forwarding to circumvent restrictive firewalls
	Using Jupyter via SSH tunnel
	Using SSH in Visual Studio Code

	Usage
	Minimal example
	Compiling and running ALF
	Class ALF_source
	Class Simulation
	Specifying parameters
	Series of MPI runs
	Parallel Tempering
	Only preparing runs

	Postprocessing
	Basic analysis
	Get analysis results
	Scalar observables
	Example
	Equal-time correlation functions
	Time-displaced correlation functions

	Custom/Derived Observables
	Checking warmup and autocorrelation times
	Preparations
	Check warmup
	Check rebin

	Symmetrization of correlations on the lattice

	Command line tools
	alf_run.py
	alf_postprocess.py

	Reference
	Class ALF_source
	Class Simulation
	High-level analysis functions
	Class Lattice
	Low-level analysis functions
	Utility functions
	Command line tools
	minimal_ALF_run
	alf_run
	Named Arguments

	alf_postprocess
	Positional Arguments
	Named Arguments

	alf_bin_count
	Positional Arguments

	alf_show_obs
	Positional Arguments

	alf_del_bins
	Positional Arguments
	Named Arguments

	alf_test_branch
	Named Arguments

	Conclusions
	Outlook for (py)ALF

	Appendix
	Appendix to “Nematic quantum criticality in Dirac systems”
	Renormalization group flow
	pyALF Example
	Running ALF
	ALF_source
	Perform simulations
	Prepare directories for simulation

	Postprocessing
	Find QMC data
	Custom observables
	Check warmup and autocorrelation times
	Error analysis
	Read analysis results
	Plot order parameter
	Plot RG-invariant quantities
	Data collapse
	Manual data collapse
	Data collapse fit

	Plot correlation
	Accessing elements of the dataframe
	Creating Lattice object
	Spin-Spin correlation deep in ordered phase
	Spin-Spin correlation in disordered phase

	Fermionic dispersion

	Source code of data collapse functions
	Source code for exponential fit of Green function
	Other values for Nσ and ξ
	The C2v model
	The C4v model

	Appendix to spin S, SU(N) antiferromagnet
	The quadratic Casimir eigenvalue in terms of the Young tableau
	Bound on the eigenvalue of the quadratic Casimir operator
	Systematic errors
	Bounds on the bond observable

	Acknowledgments
	Bibliography
	Affidavit / Eidesstattliche Erklärung

