Publications


Citations to ALF's SciPost documentation


A number of projects have benefited from ALF. The following is a selection of published works that reference ALF’s main documentation or an earlier version, as recorded by Crossref.


1. Yu X-J, Shi S-H, Xu L, Li Z-X. Emergence of competing orders and possible quantum spin liquid in SU(N) fermions. Physical Review Letters 132 (2024). 10.1103/physrevlett.132.036704.

2. Astrakhantsev N, Wagner G, Westerhout T, Neupert T, Fischer MH. Understanding symmetry breaking in twisted bilayer graphene from cluster constraints. Physical Review Research 5 (2023). 10.1103/physrevresearch.5.043214.

3. Bollmark G, Köhler T, Pizzino L, Yang Y, Hofmann JS, Shi H, Zhang S, Giamarchi T, Kantian A. Solving 2D and 3D Lattice Models of Correlated Fermions—Combining Matrix Product States with Mean-Field Theory. Physical Review X 13 (2023). 10.1103/physrevx.13.011039.

4. Bollmark G, Köhler T, Pizzino L, Yang Y, Hofmann JS, Shi H, Zhang S, Giamarchi T, Kantian A. Solving 2D and 3D Lattice Models of Correlated Fermions—Combining Matrix Product States with Mean-Field Theory. Physical Review X 13 (2023). 10.1103/physrevx.13.011039.

5. Hofmann JS, Berg E, Chowdhury D. Superconductivity, Charge Density Wave, and Supersolidity in Flat Bands with a Tunable Quantum Metric. Physical Review Letters 130 (2023). 10.1103/physrevlett.130.226001.

6. Hou D, Liu Y, Sato T, Guo W, Assaad FF, Wang Z. Bandwidth-controlled quantum phase transition between an easy-plane quantum spin hall state and an s -wave superconductor. Physical Review B 107 (2023). 10.1103/physrevb.107.155107.

7. Hou D, Liu Y, Sato T, Guo W, Assaad FF, Wang Z. Bandwidth-controlled quantum phase transition between an easy-plane quantum spin hall state and an s -wave superconductor. Physical Review B 107 (2023). 10.1103/physrevb.107.155107.

8. Huang L. ACFlow: An open source toolkit for analytic continuation of quantum Monte Carlo data. Computer Physics Communications 292, 108863 (2023). 10.1016/j.cpc.2023.108863.

9. Khait I, Bhattacharyya S, Samanta A, Auerbach A. Hall anomalies of the doped Mott insulator. npj Quantum Materials 8 (2023). 10.1038/s41535-023-00611-5.

10. Liu ZH, Frank B, Janssen L, Vojta M, Assaad FF. Magnetic quantum phase transition in a metallic Kondo heterostructure. Physical Review B 107 (2023). 10.1103/physrevb.107.165104.

11. Liu ZH, Frank B, Janssen L, Vojta M, Assaad FF. Magnetic quantum phase transition in a metallic Kondo heterostructure. Physical Review B 107 (2023). 10.1103/physrevb.107.165104.

12. Liu ZH, Jiang W, Chen B-B, Rong J, Cheng M, Sun K, Meng ZY, Assaad FF. Fermion Disorder Operator at Gross-Neveu and Deconfined Quantum Criticalities. Physical Review Letters 130 (2023). 10.1103/physrevlett.130.266501.

13. Sato T, Wang Z, Liu Y, Hou D, Hohenadler M, Guo W, Assaad FF. Simulation of fermionic and bosonic critical points with emergent SO(5) symmetry. Physical Review B 108 (2023). 10.1103/physrevb.108.l121111.

14. Schwab J, Parisen Toldin F, Assaad FF. Phase diagram of the SU(N) antiferromagnet of spin S on a square lattice. Physical Review B 108 (2023). 10.1103/physrevb.108.115151.

15. Takai K, Yamaji Y, Assaad FF, Imada M. Quantum criticality of bandwidth-controlled Mott transition. Physical Review Research 5 (2023). 10.1103/physrevresearch.5.033186.

16. Ulybyshev M, Winterowd C, Assaad F, Zafeiropoulos S. Instanton gas approach to the Hubbard model. Physical Review B 107 (2023). 10.1103/physrevb.107.045143.

17. Ulybyshev M, Winterowd C, Assaad F, Zafeiropoulos S. Instanton gas approach to the Hubbard model. Physical Review B 107 (2023). 10.1103/physrevb.107.045143.

18. Wang Z, Assaad F, Ulybyshev M. Validity of slac fermions for the (1+1) -dimensional helical luttinger liquid. Physical Review B 108 (2023). 10.1103/physrevb.108.045105.

19. Assaad F, Bercx M, Goth F, Götz A, Hofmann J, Huffman E, Liu Z, Parisen Toldin F, Portela J, Schwab J. Codebase release 2.0 for ALF (Algorithms for Lattice Fermions). SciPost Physics Codebases (2022). 10.21468/scipostphyscodeb.1-r2.0.

20. Assaad F, Bercx M, Goth F, Götz A, Hofmann J, Huffman E, Liu Z, Parisen Toldin F, Portela J, Schwab J. Codebase release 2.0 for ALF (Algorithms for Lattice Fermions). SciPost Physics Codebases (2022). 10.21468/scipostphyscodeb.1-r2.0.

21. Danu B, Vojta M, Grover T, Assaad FF. Spin chain on a metallic surface: Dissipation-induced order versus Kondo entanglement. Physical Review B 106 (2022). 10.1103/physrevb.106.l161103.

22. Danu B, Vojta M, Grover T, Assaad FF. Spin chain on a metallic surface: Dissipation-induced order versus Kondo entanglement. Physical Review B 106 (2022). 10.1103/physrevb.106.l161103.

23. Goth F. Higher Order Auxiliary Field Quantum Monte Carlo Methods. Journal of Physics: Conference Series 2207, 012029 (2022). 10.1088/1742-6596/2207/1/012029.

24. Goth F. Higher Order Auxiliary Field Quantum Monte Carlo Methods. Journal of Physics: Conference Series 2207, 012029 (2022). 10.1088/1742-6596/2207/1/012029.

25. Herzog-Arbeitman J, Peri V, Schindler F, Huber SD, Bernevig BA. Superfluid Weight Bounds from Symmetry and Quantum Geometry in Flat Bands. Physical Review Letters 128 (2022). 10.1103/physrevlett.128.087002.

26. Herzog-Arbeitman J, Peri V, Schindler F, Huber SD, Bernevig BA. Superfluid Weight Bounds from Symmetry and Quantum Geometry in Flat Bands. Physical Review Letters 128 (2022). 10.1103/physrevlett.128.087002.

27. Hofmann JS, Khalaf E, Vishwanath A, Berg E, Lee JY. Fermionic Monte Carlo Study of a Realistic Model of Twisted Bilayer Graphene. Physical Review X 12 (2022). 10.1103/physrevx.12.011061.

28. Hofmann JS, Khalaf E, Vishwanath A, Berg E, Lee JY. Fermionic Monte Carlo Study of a Realistic Model of Twisted Bilayer Graphene. Physical Review X 12 (2022). 10.1103/physrevx.12.011061.

29. Hohenadler M, Liu Y, Sato T, Wang Z, Guo W, Assaad FF. Thermodynamic and dynamical signatures of a quantum spin Hall insulator to superconductor transition. Physical Review B 106 (2022). 10.1103/physrevb.106.024509.

30. Hohenadler M, Liu Y, Sato T, Wang Z, Guo W, Assaad FF. Thermodynamic and dynamical signatures of a quantum spin Hall insulator to superconductor transition. Physical Review B 106 (2022). 10.1103/physrevb.106.024509.

31. Osterkorn A, Kehrein S. Photoinduced prethermal order parameter dynamics in the two-dimensional large- N hubbard-heisenberg model. Physical Review B 106 (2022). 10.1103/physrevb.106.214318.

32. Osterkorn A, Kehrein S. Photoinduced prethermal order parameter dynamics in the two-dimensional large- N hubbard-heisenberg model. Physical Review B 106 (2022). 10.1103/physrevb.106.214318.

33. Raczkowski M, Danu B, Assaad FF. Breakdown of heavy quasiparticles in a honeycomb Kondo lattice: A quantum Monte Carlo study. Physical Review B 106 (2022). 10.1103/physrevb.106.l161115.

34. Raczkowski M, Danu B, Assaad FF. Breakdown of heavy quasiparticles in a honeycomb Kondo lattice: A quantum Monte Carlo study. Physical Review B 106 (2022). 10.1103/physrevb.106.l161115.

35. Sato T, Assaad FF. Negative sign free formulations of generalized Kitaev models with higher symmetries. Physical Review B 106 (2022). 10.1103/physrevb.106.155110.

36. Sato T, Assaad FF. Negative sign free formulations of generalized Kitaev models with higher symmetries. Physical Review B 106 (2022). 10.1103/physrevb.106.155110.

37. Sushchyev A, Wessel S. Thermodynamics of the metal-insulator transition in the extended Hubbard model from determinantal quantum Monte Carlo. Physical Review B 106 (2022). 10.1103/physrevb.106.155121.

38. Sushchyev A, Wessel S. Thermodynamics of the metal-insulator transition in the extended Hubbard model from determinantal quantum Monte Carlo. Physical Review B 106 (2022). 10.1103/physrevb.106.155121.

39. Tarat S, Xiao B, Mondaini R, Scalettar RT. Deconvolving the components of the sign problem. Physical Review B 105 (2022). 10.1103/physrevb.105.045107.

40. Tarat S, Xiao B, Mondaini R, Scalettar RT. Deconvolving the components of the sign problem. Physical Review B 105 (2022). 10.1103/physrevb.105.045107.

41. Tian L, Meng J, Ma T. Intermediate phase induced by dilution in a correlated Dirac Fermi system. Physical Review B 106 (2022). 10.1103/physrevb.106.205144.

42. Tian L, Meng J, Ma T. Intermediate phase induced by dilution in a correlated Dirac Fermi system. Physical Review B 106 (2022). 10.1103/physrevb.106.205144.

43. Ulybyshev M, Assaad F. Mitigating spikes in fermion Monte Carlo methods by reshuffling measurements. Physical Review E 106 (2022). 10.1103/physreve.106.025318.

44. Ulybyshev M, Assaad F. Mitigating spikes in fermion Monte Carlo methods by reshuffling measurements. Physical Review E 106 (2022). 10.1103/physreve.106.025318.

45. Danu B, Liu Z, Assaad FF, Raczkowski M. Zooming in on heavy fermions in Kondo lattice models. Physical Review B 104 (2021). 10.1103/physrevb.104.155128.

46. Danu B, Liu Z, Assaad FF, Raczkowski M. Zooming in on heavy fermions in Kondo lattice models. Physical Review B 104 (2021). 10.1103/physrevb.104.155128.

47. Grossman O, Hofmann JS, Holder T, Berg E. Specific Heat of a Quantum Critical Metal. Physical Review Letters 127 (2021). 10.1103/physrevlett.127.017601.

48. Grossman O, Hofmann JS, Holder T, Berg E. Specific Heat of a Quantum Critical Metal. Physical Review Letters 127 (2021). 10.1103/physrevlett.127.017601.

49. Liu Y, Wang Z, Sato T, Guo W, Assaad FF. Gross-Neveu Heisenberg criticality: Dynamical generation of quantum spin Hall masses. Physical Review B 104 (2021). 10.1103/physrevb.104.035107.

50. Liu Y, Wang Z, Sato T, Guo W, Assaad FF. Gross-Neveu Heisenberg criticality: Dynamical generation of quantum spin Hall masses. Physical Review B 104 (2021). 10.1103/physrevb.104.035107.

51. Mishchenko PA, Kato Y, Motome Y. Quantum Monte Carlo method on asymptotic Lefschetz thimbles for quantum spin systems: An application to the Kitaev model in a magnetic field. Physical Review D 104 (2021). 10.1103/physrevd.104.074517.

52. Mishchenko PA, Kato Y, Motome Y. Quantum Monte Carlo method on asymptotic Lefschetz thimbles for quantum spin systems: An application to the Kitaev model in a magnetic field. Physical Review D 104 (2021). 10.1103/physrevd.104.074517.

53. Peri V, Song Z-D, Bernevig BA, Huber SD. Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime. Physical Review Letters 126 (2021). 10.1103/physrevlett.126.027002.

54. Peri V, Song Z-D, Bernevig BA, Huber SD. Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime. Physical Review Letters 126 (2021). 10.1103/physrevlett.126.027002.

55. Raczkowski M, Assaad FF, Imada M. Local moments versus itinerant antiferromagnetism: Magnetic phase diagram and spectral properties of the anisotropic square lattice Hubbard model. Physical Review B 103 (2021). 10.1103/physrevb.103.125137.

56. Raczkowski M, Assaad FF, Imada M. Local moments versus itinerant antiferromagnetism: Magnetic phase diagram and spectral properties of the anisotropic square lattice Hubbard model. Physical Review B 103 (2021). 10.1103/physrevb.103.125137.

57. Sato T, Assaad FF. Quantum Monte Carlo simulation of generalized Kitaev models. Physical Review B 104 (2021). 10.1103/physrevb.104.l081106.

58. Sato T, Assaad FF. Quantum Monte Carlo simulation of generalized Kitaev models. Physical Review B 104 (2021). 10.1103/physrevb.104.l081106.

59. Sato T, Hohenadler M, Grover T, McGreevy J, Assaad FF. Topological terms on topological defects: A quantum Monte Carlo study. Physical Review B 104 (2021). 10.1103/physrevb.104.l161105.

60. Sato T, Hohenadler M, Grover T, McGreevy J, Assaad FF. Topological terms on topological defects: A quantum Monte Carlo study. Physical Review B 104 (2021). 10.1103/physrevb.104.l161105.

61. Wang Z, Liu Y, Sato T, Hohenadler M, Wang C, Guo W, Assaad FF. Doping-Induced Quantum Spin Hall Insulator to Superconductor Transition. Physical Review Letters 126 (2021). 10.1103/physrevlett.126.205701.

62. Wang Z, Liu Y, Sato T, Hohenadler M, Wang C, Guo W, Assaad FF. Doping-Induced Quantum Spin Hall Insulator to Superconductor Transition. Physical Review Letters 126 (2021). 10.1103/physrevlett.126.205701.

63. Wang Z, Zaletel MP, Mong RS, Assaad FF. Phases of the ( 2+1 ) dimensional so(5) nonlinear sigma model with topological term. Physical Review Letters 126 (2021). 10.1103/physrevlett.126.045701.

64. Wang Z, Zaletel MP, Mong RS, Assaad FF. Phases of the ( 2+1 ) dimensional so(5) nonlinear sigma model with topological term. Physical Review Letters 126 (2021). 10.1103/physrevlett.126.045701.

65. Bauer C. Fast and stable determinant quantum Monte Carlo. SciPost Physics Core 2 (2020). 10.21468/scipostphyscore.2.2.011.

66. Bauer C. Fast and stable determinant quantum Monte Carlo. SciPost Physics Core 2 (2020). 10.21468/scipostphyscore.2.2.011.

67. Danu B, Vojta M, Assaad FF, Grover T. Kondo breakdown in a spin- 1/2 chain of adatoms on a dirac semimetal. Physical Review Letters 125 (2020). 10.1103/physrevlett.125.206602.

68. Danu B, Vojta M, Assaad FF, Grover T. Kondo breakdown in a spin- 1/2 chain of adatoms on a dirac semimetal. Physical Review Letters 125 (2020). 10.1103/physrevlett.125.206602.

69. Gazit S, Assaad FF, Sachdev S. Fermi Surface Reconstruction without Symmetry Breaking. Physical Review X 10 (2020). 10.1103/physrevx.10.041057.

70. Gazit S, Assaad FF, Sachdev S. Fermi Surface Reconstruction without Symmetry Breaking. Physical Review X 10 (2020). 10.1103/physrevx.10.041057.

71. Hofmann JS, Assaad FF, Queiroz R, Khalaf E. Search for correlation-induced adiabatic paths between distinct topological insulators. Physical Review Research 2 (2020). 10.1103/physrevresearch.2.023390.

72. Hofmann JS, Assaad FF, Queiroz R, Khalaf E. Search for correlation-induced adiabatic paths between distinct topological insulators. Physical Review Research 2 (2020). 10.1103/physrevresearch.2.023390.

73. Hofmann JS, Berg E, Chowdhury D. Superconductivity, pseudogap, and phase separation in topological flat bands. Physical Review B 102 (2020). 10.1103/physrevb.102.201112.

74. Hofmann JS, Berg E, Chowdhury D. Superconductivity, pseudogap, and phase separation in topological flat bands. Physical Review B 102 (2020). 10.1103/physrevb.102.201112.

75. Huffman E, Chandrasekharan S. Fermion-bag inspired Hamiltonian lattice field theory for fermionic quantum criticality. Physical Review D 101 (2020). 10.1103/physrevd.101.074501.

76. Huffman E, Chandrasekharan S. Fermion-bag inspired Hamiltonian lattice field theory for fermionic quantum criticality. Physical Review D 101 (2020). 10.1103/physrevd.101.074501.

77. Kappl P, Wallerberger M, Kaufmann J, Pickem M, Held K. Statistical error estimates in dynamical mean-field theory and extensions thereof. Physical Review B 102 (2020). 10.1103/physrevb.102.085124.

78. Kappl P, Wallerberger M, Kaufmann J, Pickem M, Held K. Statistical error estimates in dynamical mean-field theory and extensions thereof. Physical Review B 102 (2020). 10.1103/physrevb.102.085124.

79. Raczkowski M, Assaad FF. Phase diagram and dynamics of the SU(N) symmetric kondo lattice model. Physical Review Research 2 (2020). 10.1103/physrevresearch.2.013276.

80. Raczkowski M, Assaad FF. Phase diagram and dynamics of the SU(N) symmetric kondo lattice model. Physical Review Research 2 (2020). 10.1103/physrevresearch.2.013276.

81. Raczkowski M, Peters R, Phùng TT, Takemori N, Assaad FF, Honecker A, Vahedi J. Hubbard model on the honeycomb lattice: From static and dynamical mean-field theories to lattice quantum Monte Carlo simulations. Physical Review B 101 (2020). 10.1103/physrevb.101.125103.

82. Raczkowski M, Peters R, Phùng TT, Takemori N, Assaad FF, Honecker A, Vahedi J. Hubbard model on the honeycomb lattice: From static and dynamical mean-field theories to lattice quantum Monte Carlo simulations. Physical Review B 101 (2020). 10.1103/physrevb.101.125103.

83. Ulybyshev M, Winterowd C, Zafeiropoulos S. Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice. Physical Review D 101 (2020). 10.1103/physrevd.101.014508.

84. Ulybyshev M, Winterowd C, Zafeiropoulos S. Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice. Physical Review D 101 (2020). 10.1103/physrevd.101.014508.

85. Zhang H et al. Coexistence and Interaction of Spinons and Magnons in an Antiferromagnet with Alternating Antiferromagnetic and Ferromagnetic Quantum Spin Chains. Physical Review Letters 125 (2020). 10.1103/physrevlett.125.037204.

86. Zhang H et al. Coexistence and Interaction of Spinons and Magnons in an Antiferromagnet with Alternating Antiferromagnetic and Ferromagnetic Quantum Spin Chains. Physical Review Letters 125 (2020). 10.1103/physrevlett.125.037204.

87. Buividovich P, Smith D, Ulybyshev M, Smekal L von. Numerical evidence of conformal phase transition in graphene with long-range interactions. Physical Review B 99 (2019). 10.1103/physrevb.99.205434.

88. Buividovich P, Smith D, Ulybyshev M, Smekal L von. Numerical evidence of conformal phase transition in graphene with long-range interactions. Physical Review B 99 (2019). 10.1103/physrevb.99.205434.

89. Chen C, Xu XY, Meng ZY, Hohenadler M. Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons. Physical Review Letters 122 (2019). 10.1103/physrevlett.122.077601.

90. Chen C, Xu XY, Meng ZY, Hohenadler M. Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons. Physical Review Letters 122 (2019). 10.1103/physrevlett.122.077601.

91. Danu B, Assaad FF, Mila F. Exploring the Kondo Effect of an Extended Impurity with Chains of Co Adatoms in a Magnetic Field. Physical Review Letters 123 (2019). 10.1103/physrevlett.123.176601.

92. Danu B, Assaad FF, Mila F. Exploring the Kondo Effect of an Extended Impurity with Chains of Co Adatoms in a Magnetic Field. Physical Review Letters 123 (2019). 10.1103/physrevlett.123.176601.

93. Fukuma M, Matsumoto N, Umeda N. Applying the tempered Lefschetz thimble method to the Hubbard model away from half filling. Physical Review D 100 (2019). 10.1103/physrevd.100.114510.

94. Fukuma M, Matsumoto N, Umeda N. Applying the tempered Lefschetz thimble method to the Hubbard model away from half filling. Physical Review D 100 (2019). 10.1103/physrevd.100.114510.

95. Hofmann JS, Assaad FF, Grover T. Fractionalized Fermi liquid in a frustrated Kondo lattice model. Physical Review B 100 (2019). 10.1103/physrevb.100.035118.

96. Hofmann JS, Assaad FF, Grover T. Fractionalized Fermi liquid in a frustrated Kondo lattice model. Physical Review B 100 (2019). 10.1103/physrevb.100.035118.

97. Hohenadler M, Assaad FF. Orthogonal metal in the Hubbard model with liberated slave spins. Physical Review B 100 (2019). 10.1103/physrevb.100.125133.

98. Hohenadler M, Assaad FF. Orthogonal metal in the Hubbard model with liberated slave spins. Physical Review B 100 (2019). 10.1103/physrevb.100.125133.

99. Kim FH, Assaad FF, Penc K, Mila F. Dimensional crossover in the SU(4) Heisenberg model in the six-dimensional antisymmetric self-conjugate representation revealed by quantum Monte Carlo and linear flavor-wave theory. Physical Review B 100 (2019). 10.1103/physrevb.100.085103.

100. Kim FH, Assaad FF, Penc K, Mila F. Dimensional crossover in the SU(4) Heisenberg model in the six-dimensional antisymmetric self-conjugate representation revealed by quantum Monte Carlo and linear flavor-wave theory. Physical Review B 100 (2019). 10.1103/physrevb.100.085103.

101. Leaw JN, Tang H-K, Sengupta P, Assaad FF, Herbut IF, Adam S. Electronic ground state in bilayer graphene with realistic Coulomb interactions. Physical Review B 100 (2019). 10.1103/physrevb.100.125116.

102. Leaw JN, Tang H-K, Sengupta P, Assaad FF, Herbut IF, Adam S. Electronic ground state in bilayer graphene with realistic Coulomb interactions. Physical Review B 100 (2019). 10.1103/physrevb.100.125116.

103. Liu Y, Wang Z, Sato T, Hohenadler M, Wang C, Guo W, Assaad FF. Superconductivity from the condensation of topological defects in a quantum spin-Hall insulator. Nature Communications 10 (2019). 10.1038/s41467-019-10372-0.

104. Liu Y, Wang Z, Sato T, Hohenadler M, Wang C, Guo W, Assaad FF. Superconductivity from the condensation of topological defects in a quantum spin-Hall insulator. Nature Communications 10 (2019). 10.1038/s41467-019-10372-0.

105. Parisen Toldin F, Sato T, Assaad FF. Mutual information in heavy-fermion systems. Physical Review B 99 (2019). 10.1103/physrevb.99.155158.

106. Parisen Toldin F, Sato T, Assaad FF. Mutual information in heavy-fermion systems. Physical Review B 99 (2019). 10.1103/physrevb.99.155158.

107. Raczkowski M, Assaad FF. Emergent Coherent Lattice Behavior in Kondo Nanosystems. Physical Review Letters 122 (2019). 10.1103/physrevlett.122.097203.

108. Raczkowski M, Assaad FF. Emergent Coherent Lattice Behavior in Kondo Nanosystems. Physical Review Letters 122 (2019). 10.1103/physrevlett.122.097203.

109. Toldin FP, Assaad FF. Entanglement studies of interacting fermionic models. Journal of Physics: Conference Series 1163, 012056 (2019). 10.1088/1742-6596/1163/1/012056.

110. Toldin FP, Assaad FF. Entanglement studies of interacting fermionic models. Journal of Physics: Conference Series 1163, 012056 (2019). 10.1088/1742-6596/1163/1/012056.

111. Wynen J-L, Berkowitz E, Körber C, Lähde TA, Luu T. Avoiding ergodicity problems in lattice discretizations of the Hubbard model. Physical Review B 100 (2019). 10.1103/physrevb.100.075141.

112. Wynen J-L, Berkowitz E, Körber C, Lähde TA, Luu T. Avoiding ergodicity problems in lattice discretizations of the Hubbard model. Physical Review B 100 (2019). 10.1103/physrevb.100.075141.

113. Beyl S, Goth F, Assaad FF. Revisiting the hybrid quantum Monte Carlo method for Hubbard and electron-phonon models. Physical Review B 97 (2018). 10.1103/physrevb.97.085144.

114. Beyl S, Goth F, Assaad FF. Revisiting the hybrid quantum Monte Carlo method for Hubbard and electron-phonon models. Physical Review B 97 (2018). 10.1103/physrevb.97.085144.

115. Gazit S, Assaad FF, Sachdev S, Vishwanath A, Wang C. Confinement transition of ℤ 2 gauge theories coupled to massless fermions: Emergent quantum chromodynamics and so (5) symmetry. Proceedings of the National Academy of Sciences 115 (2018). 10.1073/pnas.1806338115.

116. Gazit S, Assaad FF, Sachdev S, Vishwanath A, Wang C. Confinement transition of ℤ 2 gauge theories coupled to massless fermions: Emergent quantum chromodynamics and so (5) symmetry. Proceedings of the National Academy of Sciences 115 (2018). 10.1073/pnas.1806338115.

117. Hohenadler M, Assaad FF. Fractionalized Metal in a Falicov-Kimball Model. Physical Review Letters 121 (2018). 10.1103/physrevlett.121.086601.

118. Hohenadler M, Assaad FF. Fractionalized Metal in a Falicov-Kimball Model. Physical Review Letters 121 (2018). 10.1103/physrevlett.121.086601.

119. Ippoliti M, Mong RSK, Assaad FF, Zaletel MP. Half-filled Landau levels: A continuum and sign-free regularization for three-dimensional quantum critical points. Physical Review B 98 (2018). 10.1103/physrevb.98.235108.

120. Ippoliti M, Mong RSK, Assaad FF, Zaletel MP. Half-filled Landau levels: A continuum and sign-free regularization for three-dimensional quantum critical points. Physical Review B 98 (2018). 10.1103/physrevb.98.235108.

121. Parisen Toldin F, Assaad FF. Entanglement Hamiltonian of Interacting Fermionic Models. Physical Review Letters 121 (2018). 10.1103/physrevlett.121.200602.

122. Parisen Toldin F, Assaad FF. Entanglement Hamiltonian of Interacting Fermionic Models. Physical Review Letters 121 (2018). 10.1103/physrevlett.121.200602.

123. Sato T, Assaad FF, Grover T. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models. Physical Review Letters 120 (2018). 10.1103/physrevlett.120.107201.

124. Sato T, Assaad FF, Grover T. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models. Physical Review Letters 120 (2018). 10.1103/physrevlett.120.107201.

125. Tang H-K, Leaw JN, Rodrigues JNB, Herbut IF, Sengupta P, Assaad FF, Adam S. The role of electron-electron interactions in two-dimensional Dirac fermions. Science 361, 570–574 (2018). 10.1126/science.aao2934.

126. Tang H-K, Leaw JN, Rodrigues JNB, Herbut IF, Sengupta P, Assaad FF, Adam S. The role of electron-electron interactions in two-dimensional Dirac fermions. Science 361, 570–574 (2018). 10.1126/science.aao2934.

127. Huffman E, Chandrasekharan S. Fermion bag approach to Hamiltonian lattice field theories in continuous time. Physical Review D 96 (2017). 10.1103/physrevd.96.114502.

128. Huffman E, Chandrasekharan S. Fermion bag approach to Hamiltonian lattice field theories in continuous time. Physical Review D 96 (2017). 10.1103/physrevd.96.114502.

129. Sato T, Hohenadler M, Assaad FF. Dirac Fermions with Competing Orders: Non-Landau Transition with Emergent Symmetry. Physical Review Letters 119 (2017). 10.1103/physrevlett.119.197203.

130. Sato T, Hohenadler M, Assaad FF. Dirac Fermions with Competing Orders: Non-Landau Transition with Emergent Symmetry. Physical Review Letters 119 (2017). 10.1103/physrevlett.119.197203.

131. Shinaoka H, Assaad F, Blümer N, Werner P. Quantum Monte Carlo impurity solvers for multi-orbital problems and frequency-dependent interactions. The European Physical Journal Special Topics 226, 2499–2523 (2017). 10.1140/epjst/e2017-70050-x.

132. Shinaoka H, Assaad F, Blümer N, Werner P. Quantum Monte Carlo impurity solvers for multi-orbital problems and frequency-dependent interactions. The European Physical Journal Special Topics 226, 2499–2523 (2017). 10.1140/epjst/e2017-70050-x.

133. Wang Z, Assaad FF, Parisen Toldin F. Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions. Physical Review E 96 (2017). 10.1103/physreve.96.042131.

134. Wang Z, Assaad FF, Parisen Toldin F. Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions. Physical Review E 96 (2017). 10.1103/physreve.96.042131.

Crossref Cited-by

GDPR Statement