Julius-Maximilians-**UNIVERSITÄT** WURZBURG

Algorithms for lattice fermions (ALF): a flexible package for the efficient simulation of lattice Hamiltonians The ALF collaboration (F. F. Assaad, M. Bercx, F. Goth, J. S. Hofmann, J. Portela, and J. Schwab)

Goals:

- Generic package for auxiliary field Monte Carlo simulations of fermion-boson lattice models \checkmark
- Efficient implementation on modern HPC systems \checkmark
- Benchmarking and golden standards \checkmark

The role of electron-electron interactions in two dimensional Dirac fermions

$$\hat{H} = -t \sum_{\langle i,j \rangle, \sigma=1}^{2} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \hat{c}_{j,\sigma}^{\dagger} \hat{c}_{i,\sigma} \right) + \sum_{i,j} \left(\hat{n}_{i} - 1 \right) V_{i,j} \left(\hat{n}_{j} - 1 \right)$$

$$V_{i,j} = U \begin{cases} 1 & i = j \\ \gamma & i \neq j \end{cases}$$

PHYSICAL REVIEW LETTERS 120, 107201 (2018)	
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models	
Toshihiro Sato, ¹ Fakher F. Assaad, ¹ and Tarun Grover ²	
$\hat{H} = \hat{H}_{\rm Spin} + \hat{H}_{\rm Fermion} + \hat{H}_{\rm Kondo}$	
$\hat{H}_{\mathrm{Spin}} = \sum [J_{ij}^{z} \hat{S}_{i}^{z} \hat{S}_{j}^{z} + J_{ij}^{\perp} (\hat{S}_{i}^{+} \hat{S}_{j}^{-} + \mathrm{H.c.})],$	

 \geq Model can be specified at minimal programming cost

> MPI/OpenMP implementation

Fortran 2003 standard

 $\hat{H} =$

>SU(N_{col}) symmetric in colors N_{col}

>Arbitrary Bravais lattice for d=1, 2

> Block diagonal in flavors, N_{fl}

> Parallel tempering, projective and finite T approaches

M. Bercx, F. Goth, J. S. Hofmann and F. F. Assaad, SciPost Phys. 3 (2017), 013.

Lattice gauge theories

Confinement transition of \mathbb{Z}_2 gauge theories coupled to massless fermions: Emergent quantum chromodynamics and SO(5) symmetry

Snir Gazit^{a,1}, Fakher F. Assaad^b, Subir Sachdev^{c,d,1}, Ashvin Vishwanath^c, and Chong Wang^c

PHYSICAL REVIEW X 6, 041049 (2016)

Simple Fermionic Model of Deconfined Phases and Phase Transitions

F. F. Assaad¹ and Tarun Grover^{2,3}

S. Gazit, FFA, and S. Sachdev (arXiv:1906.11250), OSM → FL* transitions